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Abstract—Performance of a Hamiltonian based particle method in
simulation of nonlinear structural dynamics is subjected to
investigation in terms of stability and accuracy. The governing
equation of motion is derived based on Hamilton's principle of least
action, while the deformation gradient is obtained according to
Weighted Least Square method. The hyper-elasticity models of Saint
Venant-Kirchhoff and a compressible version similar to Mooney-
Rivlin are engaged for the calculation of second Piola-Kirchhoff stress
tensor, respectively. Stability along with accuracy of numerical model
is verified by reproducing critical stress fields in static and dynamic
responses. As the results, although performance of Hamiltonian based
model is evaluated as being acceptable in dealing with intense
extensional stress fields, however kinds of instabilities reveal in the
case of violent collision which can be most likely attributed to zero
energy singular modes.

Keywords—Hamilton's principle of least action, particle based
method, hyper-elasticity, analysis of stability.

I. INTRODUCTION

AKING advantage of Lagrangian formulation, meshfree
particle based methods are capable of donating significant
contributions to structural dynamics. Absence of rigid
connectivity between elements (i.e. grid system) enables
particle methods to cope with problems including extremely
large deformations where mesh based methods are usually
prone to serious problems associated with intense mesh
distortion. Specifically, in the case of fragmentation, particle
methods are capable of reproducing crack propagation through
arbitrary roots, in contrast with the mesh based methods at
which the cracks should necessarily happen across the nodes of
the element. Thus, in so many studies in the literature,
application of particle methods into problems involved in large
structural deformations (i.e. nonlinear elasticity and fracture
mechanism) has been put forward in recent decades.
Numerous studies have been carried out on application of
particle methods into structural dynamics so far, either based on
kernel approximations, e.g. Smoothed Particle Hydrodynamics
(SPH) [1], [2] and Moving Particle Semi-implicit [3], or based
on field approximation, e.g. Element Free Galerkin [4]. In this
regard, Libersky and Petschek [5] employed SPH to fracture
dynamics. They modeled fragmentation, setting the stress to
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zero, after yielding a critical threshold of strain. It was revealed
that SPH suffers from intrinsic deficiencies, i.e. lack of
consistency (which decreases the accuracy) and tensile
instability [6], [7].

A variety of efforts were dedicated to remove the
aforementioned deficiencies of SPH particle method. Johnson
and Beissel [8] attributed the numerical errors involved in the
cases of extensional strains to the lack of linear completeness.
Randles and Libersky [9] and Krongauz and Belytschko [10]
proposed corrections (so called normalization) to the
derivatives of stress and displacement fields which enabled
them to reproduce either constant or linear fields. The results of
these corrections were identical to those of Moving Least
Square (MLS) in EFG [11]. Dilts employed MLS
approximations into SPH methods [12]-[14].

Swegle et al. [15] explained in details that particle methods
suffer from a crucial deficiency, i.e. tensile instability.
Belytschko and Xiao [16] performed a comprehensive study on
the effect of Eulerian kernels versus Lagrangian kernels with
respect to material instability. Based on their results, the tensile
instability can be removed by using a Lagrangian kernel.

With regard to MPS, Song et al. [17] employed MPS for
simulation of fragmentation in chalk. Kondo et al. [18] and
Suzuki and Koshizuka [19] studied the elastic dynamics with
special attention to the energy conservation property of elastic
body. They derived the motion equations from Lagrangian
based on the Hamiltonian's principle of least action, (according
to [20]). Employing Lagrangian kernel, the tensile instability
was avoided in their model. They also used symplectic scheme
for time integration, in order to improve the conservation of
energy in the Hamiltonian system. Kondo et al. [21] developed
an artificial stabilizing scheme for suppressing the spurious
oscillations of particles which were attributed to singular zero
energy modes. Khayyer and Gotoh [22] performed a
comprehensive stability analysis, describing the criterion for
commencement of tensile instability in MPS based pressure
calculations, following the approach of swegle [23]. They also
proposed enhanced schemes for improvement of the stability
and accuracy of the MPS model, e.g. Corrective matrix for
more accurate approximation of gradient [24]. Hwang et al.
[25] proposed a fully-Lagrangian MPS-based coupled model to
the problem of interaction between incompressible fluid and
linear elastic structure.

The present study aims to investigate the performance of
Hamiltonian based structural model [19] in simulation of
nonlinear structural dynamics, in terms of stability and
accuracy. The accuracy and stability of the model are examined
by reproducing critical stress fields in cases of spurious
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material instability in rings, colliding rubber rings, pure tension
in slab and finally oscillations of a cantilever plate, and static
equilibrium state of a cantilever beam. Lagrangian kernel is
used all through the simulations along with the application of
hyper-elasticity models of Saint Venant-Kirchhoff and a
compressive version similar to Mooney-Rivlin.

I1. GOVERNING EQUATIONS

Hamiltonian based governing equation of motion for
structural analysis is described on the basis of Hamilton's
principle of least action as [19]
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where, V represents the velocity vector, y stands for the strain
energy density function, p is the density of structural material, r
is position vector and subscripts i and j refer to main particle
and its neighbors, respectively. Since i is solely a function of
deformation gradient tensor (F) [26], by using the definition of
first Piola-Kirchhoff stress tensor I, (2), the derivative of
stored energy density function y with respect to position vector
in (1) is transformed into (3):

_oy(F)
== @

oy(F)_ow(F). oF _, oF
“or T er

or oF ®

The deformation gradient tensor (F) is calculated based on
Weighted Least Square method by minimization of the error
function in calculation of structural particle positions (4)-(6).
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With application of (2)-(5), the variational based motion
equation is obtained as (7) [19], [21].
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Here, S is the second Piola-Kirchhoff stress tensor. Indices i
and j refer to the main particle and its neighboring particle,

respectively.
For time integration, the symplectic scheme [19], [21] is
employed as:

n+l1 (8)
vt =yn +[%) At

where, Xi is the i th component (i = 1, 2) of position vector r, n is
the number of time step, and At is the magnitude of time step
interval.

III. HYPER-ELASTICITY MODELS

The second Piola-Kirchhoff stress tensor (S) in (7) is
obtained from the application of constitutive hyper-elasticity
models on Green Lagrange (g) or Right Cauchy-Green (C)
strain tensors, (9) and (10):

1
e=—(C-1 9
Se-n) ©)
C=F'.F (10)
In the present study, two different versions of

hyper-elasticity models, i.e. Saint Venant-Kirchhoff (11) and a
form of compressible hyper-elasticity model, which roughly
resembles Mooney-Rivlin constitutive equation (12) [7] are
employed.
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herein, 1 and x are first and second lame constants, respectively.
The constants C; and C, are usually defined according to the
results of tension-compression experiments associated with the
particular type of material. Also, |;, |, and I3, represent first,
second and third invariants of Cauchy-Green strain tensor (C),
respectively.

IV. RESULTS AND DISCUSSION

In order to investigate the performance of the Hamiltonian
based structural model in terms of stability and accuracy,
standard benchmark tests, i.e. spurious material instability in
rubber ring, colliding rings, slab in pure tension, and finally
dynamic response of a cantilever plate [27] and static
equilibrium state of a cantilever beam are to be reproduced in
this section as follows.

A.Spurious Material Instability in Rubber Ring

The present experiment was first reproduced by Rabczuk et
al. [28], in order to explore the onset of spurious instability due
to the implementation of Eulerian kernel. In their simulation,
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the material constitutive model was assigned as (12) at which
€1=1.265 x 10° Pa, ¢;=1.012 x 10* Pa, =1.012 x 107 Pa and
ps=125.4 kg/m® [7]. As the result of their study, it was shown
that by using Lagrangian kernel, experiment can be reproduced
successfully, while the Eulerian version of kernel will lead to
severe distortion of the material.

In this study, a radial pressure field of 6.2x10* Pa magnitude
was enforced to the inner circumference of the rubber ring. The
discretized model consisted of 2201 particles. Fig. 1 indicates

N

R

t=0.05s

the deformation along with radial Cauchy stress (ooo)
distribution in rubber ring, at times of t=0.05s and t=5s,
simulated by Hamiltonian based model. As can be seen from
Fig. 1 (att=5s), the modeled deformation is pure from material
instability (i.e. clumping of particles around the circumference
of the ring). Also, relatively smooth stress field through the
particles of ring during the simulation demonstrates appropriate
performance of the Hamiltonian based model (with Lagrangian
kernel) in dealing with this stress field [28].
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Fig. 1 Deformation along with radial Cauchy stress (ose) distribution inside the ring due to radial pressure filed enforced on inner circumference
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Fig. 2 Extensional stress (Cauchy stress tensor) distribution in slab
(pure tension)

B. Pure Tension in Slab

Numerical model was engaged in simulation of a purely
extensional stress field. The 3 cm x 1 cm slab model with the
total number of particles of 11594 was constructed. The tension

was enforced in terms of the acceleration of 0.5 m/s? to the
particles which were located within 0.2 cm strips off the ends of
slab within a time interval of 1 second. The density (ps), bulk
(K) and shear (1) modulus of the material were assigned as
1000 kg/m?, 3.25%10° Pa and 7.15x10° Pa, respectively. Saint
Venant-Kirchhoff hyper-elasticity model (11) was employed
for the calculation of second Piola-Kirchhoff stress tensor.

Fig. 2 demonstrates stress field inside the slab, due to the
mentioned extensional stress field. As can be seen in this figure,
at t=0.5 s, all the particles except for the region inside the 0.2
cm wide circumferential bands, are subjected to pure
extensional stress field without any clumping or violation in the
order of particles position.

o v’ .

-1.4E+404
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Fig. 3 Deformation and Cauchy stress field (o) within two rings at the
moment of collision

C.Colliding Rubber Rings

Following the verification process, for investigation on the
potential of tensile instability, collision of two rubber rings was
simulated. The cylindrical arrangement was selected for
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particles of the rings with inner and outer diameters of 0.03 cm
and 0.04 cm, respectively [27]. Bulk (K) and shear (1) modulus
of the material were adapted as 3.25x10° Pa and 7.15x10° Pa,
respectively. At the initial moment of simulation, the particles
of each ring were given an initial velocity of 0.2 m/s directing
each other. Saint Venant-Kirchhoff hyper-elasticity model (11)
was engaged in modeling of the dynamics. During this
collision, circumferential particles (specifically particles
neighboring the collision points) of each ring experience
intense compressional and extensional stress fields as shown in
Fig. 3. As can be seen in Fig. 3, the most critical stress field all
through the ring corresponds to the neighboring particles of the
collision point. Although, very strong oscillations are
happening across the particles of this region, there is no sign of
fragmentation, i.e. the structural model has maintained the
integrity of the material as a whole [27]. However, severe
impact imposed on the particles neighboring the region of
collision reveals violations which logically cannot be attributed

-3.0E+04

o (N/m') -5.0E+04

to the tensile instability. As it is demonstrated in Fig. 3,
instabilities are being observed in a region which is affected by
strong compressional field. In addition, application of
Lagrangian kernel has weakened the hypothesis of material
instability in the frame of tensile instability [6]. This kind of
violation is more likely to be ascribed to spurious singular
oscillations due to zero energy modes [21].

D.Oscillations of a Cantilever Plate

In order to examine the accuracy of the present structural
model, the theory of thin oscillating elastic cantilever plate was
reproduced [27], [29].

Overall configuration of cantilever plate of interest is shown
in Fig. 4. Total length of the plate is 0.24 m, while the outer
0.04 m segment is penetrated into the gap between upper and
lower bearings, in order to provide sufficient rigidity at the
cantilever support (i.e. I=0.2m, where | is the free length of the
plate).

-1L.OE+0)4

LOE+04  3.0E+04  5.0E+04

Fig. 4 Deformations and Cauchy stress distribution in oscillating cantilever plate (t = 0.07 s)

The free end of plate is given an initial velocity of vi= 0.01
m/s perpendicular to the axis of the plate. According to the
analytical solution, the initial velocity distribution among the
particles of the plate is given as:

f(x)

v, (X)=Vv|C 13
y( ) 1~0 f (|) ( )
where,
f (X) = (cos kI +cosh kl)(cos kx — cosh kx) (14)
+ (sin kl — sinh kl)(sinh kx —sin kx)
here, X is the coordinate parallel to the plate axes.
The angular velocity (w) of oscillation is obtained as:
2,4
o= Lkz (15)
12p(1-v%)

here, Co is the velocity of sound in the material (¢, = K/ p; )

and H is the thickness of the plate (=0.02cm). Bulk (K) and
shear (x«) modulus of the rubber material are adjusted as 3.25 %
10° Pa and 7.15 x 10° Pa, respectively. E and v are modulus of
Elasticity and Poisson ratio of the material respectively. Also, k
is obtained from (16), while for the fundamental mode of
vibration, effective length is as kl = 1.875 [27].

cos (kl)cosh (kl)=—1 (16)

The Saint Venant-Kirchhoff hyper-elasticity model is
assigned as the constitutive equation corresponding to material.

The time series of oscillations of free end of the cantilever
plate, modeled by the use of the Hamiltonian based structural
model is shown in Fig. 5. Also, the dimensionless period and
amplitude of the oscillations are compared with analytical
solution as well as results of previous studies in Table I. Despite
of the fact that numerical simulation is vulnerable to spurious
oscillations due to zero energy modes and also concerning that
Saint Venant-Kirchhoff is used in this simulation; however, the
results of the simulation are in appropriate range compared to
the previous studies.

TABLE I
VERIFICATION OF THE DIMENSIONLESS PERIOD AND AMPLITUDE OF THE
OSCILLATIONS OF THE FREE END OF THE PLATE
Dimensionless Dimensionless

period amplitude
Analytical solution 72.39 0.115
Present numerical model 74.38 0.114
Gray et al. [27] 82 0.125
Antoci et al. [30] 81.5 0.126
Rafiee and Tiagarajan [31] 82.2 0.126

E. Static Equilibrium of a Cantilever Beam
A concentrated load of 0.005 N magnitude was imposed to
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the free end of a cantilever beam of 0.16 m length and 0.02 m
height in y direction.

The particle distance was adjusted as 0.002 m. Young’s
modulus and Poisson’s ratio of the beam material were
assigned as 1.0 x 10° Pa and 0.3, respectively.

Fig. 6 demonstrates the deflection of the beam in the state of
equilibrium, simulated by the Hamiltonian structural model
against analytical solution of the problem. As can be seen, there
is well agreement among deflection modeled by the
Hamiltonian based structural model and that of analytical
solution.

0.034 — Analytical solution

—— Hamiltonian structural model
0.02-
0.014
0.00 r :
0.00 0.05 0.10
-0.014

displacemnet (m)

-0.024

-0.03-

Fig. 5 Time series of displacements of free end of the rubber plate
(simulation vs. analytical solution)

1.2E-04 . ,
— Analytical solution
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2.0E-054

0.00 - - - . - - - .
0.00 002 004 006 008 01 012 014 0.6
x (m)

Fig. 6 Deflection of a cantilever beam exposed to concentrated load at
the free end (static equilibrium state), simulation vs. analytical
solution

V.CONCLUSION

The aim of the present paper was to investigate the
performance of the Hamiltonian based structural model [19] in
terms of stability and accuracy. Saint Venant-Kirchhoff and a
compressible version similar to Mooney-Rivlin constitutive
equations were employed. The stability and accuracy of
numerical model were subjected to examination, by
reproducing critical stress fields in cases of spurious material
instability, colliding rings, slab in pure tension and finally
dynamic response of a cantilever plate and static equilibrium
state of a cantilever beam.

The stability of the Hamiltonian based model, especially
with regard to tensile instability was evaluated well in

simulation of cases including spurious material instability in
rubber ring and pure tension in the slab.

As the result, the Hamiltonian model is capable of treating
well with tensile instability in the mentioned ranges of linear
and nonlinear elasticity. However, in the case of colliding rings,
local violations in the region of collision were observed which
were more likely to be ascribed to zero energy modes rather
than tensile instability.

In the case of free oscillating cantilever plate and static
equilibrium state of a cantilever beam, the accuracy of the
results of model was estimated as being acceptable, almost
without any significant instability.
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