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Abstract—Since the traditional network is closed and it has no
architecture to create applications, it has been unable to evolve with
changing demands under the rapid innovation in services.
Additionally, due to the lack of the whole network profile, the quality
of service cannot be well guaranteed in the traditional network. The
Software Defined Network (SDN) utilizes global resources to support
on-demand applications/services via open, standardized and
programmable interfaces. In this paper, we implement the traffic
grooming application under a real SDN environment, and the
corresponding analysis is made. In our SDN: 1) we use OpenFlow
protocol to control the entire network by using software applications
running on the network operating system; 2) several virtual switches
are combined into the data forwarding plane through Open vSwitch; 3)
An OpenFlow controller, NOX, is involved as a logically centralized
control plane that dynamically configures the data forwarding plane;
4) The traffic grooming based on SDN is demonstrated through
dynamically modifying the idle time of flow entries. The experimental
results demonstrate that the SDN-based traffic grooming effectively
reduces the end-to-end delay, and the improvement ratio arrives to
99%.

Keywords—NOX, OpenFlow, software defined network, traffic
grooming.

1. INTRODUCTION

ITH the rapid development of Internet technology, there
will be the growing demand for new services such as
cloud computing and mobile device-to-device
communications, which makes the traditional network expose
shortcomings. The traditional network and service are
separated of each other. When the new service requires the
network to make prompt adjustments, it will be inefficient or
even impossible. We have to adjust network properties for
several years or introduce high-cost equipment to satisfy the
requirements of new services, which motivates us to deal with
this problem from the perspective of network architecture.
SDN [1], [2] decouples the control function from the data
forwarding plane using OpenFlow [3], with the objective of
achieving a flexible control of data forwarding equipment and
network traffic. SDN also provides a good platform for
innovative services. The main features of SDN include:
separation of data forwarding and control planes, logically
centralized control, and open programming interfaces. After
separation, the data forwarding plane is only responsible for
packet transferring, while the network control will be done by
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the control plane. In this way, the data forwarding plane
becomes generic and simple, and the operational cost
decreases. Meanwhile, the control plane will become
centralized. Due to the powerful performance, the centralized
controller is able to maintain the global network topology,
execute global routing and optimization, and achieve the
unified management of the entire network. All of control
commands should be sent to the data forwarding plane in the
form of flow tables. The format of the flow table is standardized
by the open programming southbound interface (e.g.,
OpenFlow).

In recent years, SDN has enabled some researches to grow
rapidly, especially for control scalability, network
virtualization, packet circuit integration [4], [S], network source
address validation, IPv6, network security [6], wireless
embedded OpenFlow technology [7], and optical networks
[8]-[12]. However, in existing SDN network, the value of idle
timeout is usually very small, i.e., the flow entry quickly
expires after idle_timeout seconds if no received traffic there is.
So, when the packets arrive at the switch, the flow entry
matched with them has been removed, and the flow tables have
to be re-established for forwarding these packets, which results
in a long end-to-end delay. To solve this problem, we build a
real SDN environment by using NOX controller [13], Open
vSwitch [14] and OpenFlow. Open vSwitch constructs a virtual
network topology. NOX controller manages all virtual switches
within the topology, and implements the routing of network
traffic using internal applications designed by us.

The key contributions of this paper are as follows. Based on
our SDN architecture, we implemented the routing function and
made an extensive experimental analysis. The routing
application has the function of traffic grooming that
dynamically modifies the idle time of flow entries, and the
improvement ratio of reducing the end-to-end delay arrives to
99%.

The rest of this paper is organized as follows. In Section II,
we introduce technologies of enabling SDN, mainly including
OpenFlow protocol, NOX controller, and Open vSwitch. In
Section III, our SDN architecture, OpenFlow communication
process, and SDN-based traffic grooming are designed. In
Section IV, we present experimental results before concluding
this paper in Section V.

II. TECHNOLOGIES OF ENABLING SDN

A. OpenFlow Protocol

OpenFlow protocol defines a communication standard
between the centralized controller (e.g., NOX) and the switches
in the data forwarding plane. OpenFlow makes traditional L2
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and L3 switches have powerful forwarding capability, e.g., the
fine-grained flow forwarding integrating MAC- and IP-based
formats in the multi-domain header of the packet. Table I lists
the main types of messages in OpenFlow 1.0, including
controller-to-switch, asynchronous, and symmetric. Each
message has multiple sub-types. Especially, the controller
initiates controller-to-switch message to acquire switch status;
the switch initiates asynchronous message to send status report

OFPT PACKET IN and OFPT FLOW _MOD. When
receiving a packet, if the switch cannot find any flow entries to
match this packet in the local flow table, it sends
OFPT PACKET IN message to the controller, and the packet
is temporarily stored in the switch buffer. So, both partial
packet information and the serial number of the buffer are also
sent to the controller. If the buffer size is not large enough to
store the packet in the switch, the whole packet is sent to the

to the controller; symmetric message is initiated by either  controller along with the attached content of the
switch or controller. OFPT PACKET IN message.
In the following, we focus on two sub-messages:
TABLEI
MESSAGES IN OPENFLOW 1.0
Controller Message Type Switch
OFPT_HELLO symmetric OFPT_HELLO
OFPT_ECHO REQUEST symmetric OFPT_ECHO REPLY
OFPT_VENDOR symmetric OFPT_VENDOR
OFPT_ERROR symmetric OFPT_ERROR

OFPT_FEATURES_REQUEST
OFPT_GET_CONFIG_REQUEST
OFPT_SET_CONFIG

OFPT PACKET OUT
OFPT_FLOW_MOD
OFPT PORT MOD
OFPT STATS_REQUEST
OFPT BARRIER REQUEST

controller-to-switch
controller-to-switch
controller-to-switch
asynchronous
asynchronous
asynchronous
controller-to-switch
controller-to-switch
controller-to-switch
controller-to-switch
controller-to-switch
controller-to-switch

OFPT FEATURES REPLY
OFPT_GET CONFIG REPLY

OFPT_PACKET _IN

OFPT FLOW_REMOVED
OFPT_PORT _STATUS

OFPT STATS REPLY
OFPT_BARRIER REPLY

OFPT QUEUE_GET CONFIG REQUEST

OFPT _QUEUE _GET CONFIG REPLY

Flow Table

e ~N
e ~N
’e ~
e ~

Header Counters Actions
Fields Fields Fields

O S

Statistics of traffic information

. Sending packets to ports

. Sending packets to the controller

. Sending packets to the normal processing pipeline
. Modifying the fields of the packet

VLAN
Priority

Ingress MAC MAC Ether VLAN
Port Src Dst Type Id

IP IP IP P
Src Dst Proto | Tos bits

TCP/UDP | TCP/UDP
Src Port | Dst Port

Fig. 1 Structure of flow table

As mentioned above, for each switch, the corresponding
forwarding rule is determined by matching flow entries of the
local flow table. Consequently, the OFPT FLOW_MOD
message includes operations of adding, modifying, and deleting
flow entries, in order to update forwarding rules. Obviously,
whether controller or switch, the actually processed
information is the traffic flow rather than a single packet. We
can see that the flow table is the most important data structure
of setting forwarding rules. As shown in Fig. 1, each flow entry
includes three parts, Header Fields, Counters Fields, and
Actions Fields. Among which, Header Fields include 12
domains: Ingress Port, Ethernet source address, Ethernet
destination address, Ethernet type, VLAN Id, VLAN priority,

IP source address, IP destination address, IP protocol type, IP
ToS bits, TCP/UDP source port, and TCP/UDP destination
port; Counters Fields can maintain any combination of flow
tables, flow entries, ports and queues, and they are mainly used
to make a statistical analysis of the traffic information such as
the number of active flow entries, and the number (bytes) of
packets sent, etc. In this paper, we achieve the flow statistics by
using OFPT_STATS REQUEST and OFPT_STATS REPLY
messages. Each flow entry has a list of actions executed
according to the priority queue. Generally, the actions are
divided into four parts: sending packets to ports, sending
packets to the controller, sending packets to the normal
processing pipeline, and modifying the fields of the packet.

1594



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

B.NOX Controller

In fact, NOX is the first controller with the development of
OpenFlow protocol, and Nicira team donated it to the open
source community in 2008. NOX mainly has two parts of
functions. On the one hand, via the southbound interface (i.e.,
OpenFlow), NOX manages or parses forwarding behaviors of
switches in the data forwarding plane. On the other hand, it is
the platform (operating system) of building new applications by
virtue of providing feasible Application Programming
Interfaces (APIs). API is actually the northbound interface.
These applications can generate new traffic flows through
network events. For example, we can develop a new application
to determine how to forward a new traffic flow in the network
because the application can guide NOX to modify the traffic
flow according to the collected statistic information.

NOX monitors the specific Transmission Control Protocol
(TCP) port so that a switch can establish the connection with
the NOX controller via the TCP port. However, the NOX core
merely provides the aforementioned simple network
connections. The high-level services are performed by NOX
components, i.e., applications such as our designed routing
modular with traffic grooming. As a result, NOX forwards the
received traffic flow to the running component, and it then
sends the modified traffic flow to the switch. In fact, each
application is a collection of functions and statements
developed by C++ or Python. The former provides better
performances, while the latter has a more user-friendly API.

C.Open vSwitch

Open vSwitch is the virtual switch achieved by software, and
it can well integrate with KVM and Xen virtualization
platforms. The working principle is very similar to that of the
physical switch. More specifically, the two ends of the Open
vSwitch connect respectively with a physical network card and
multiple virtual network cards. Note that each virtual network
card corresponds to a virtual machine. Meanwhile, the Open
vSwitch maintains an internal mapping table so that it can find
the corresponding virtual link (port) to forward packet based on
MAC address. When a packet passes through the virtual
network card configured in a virtual machine, the virtual
network card determines how to deal with this packet based on
forwarding rules. The released packet will then be forwarded to
the Open vSwitch. Different from the traditional virtual switch,
the OpenFlow-enabled Open vSwitch will find the flow entries
to match this packet in the local flow table: if it cannot find any
flow entries to match this packet, this packet will be sent to the
controller that will send a new flow table to guide the relative
Open vSwitch to forward this packet (case 1); otherwise, this
packet will be directly processed in accordance with the
corresponding actions in matching flow entries (case 2).

When a packet is forwarded to the physical network card
connected with the Open vSwitch, this Open vSwitch will send
this packet to the local physical network equipment. Aside from
OpenFlow protocol, the Open vSwitch also has data forwarding
paths (datapaths), each of which is mainly used to transfer
packets according to the actions in matching flow entries. As
shown in Fig. 2, the Open vSwitch provides two types of

datapaths: the slow channel operating at case 1, and the fast
channel with the special Linux kernel module under case 2.

—_——_——
Datapath
[ [P Slow
- Channel
E Fast
S == Channel
ecure \/Fliw Table anne

Channel —_— Packets
E Arrival

- _E Packets
- Arrival

OpenvSwitch

Fig. 2 Open vSwitch architecture

Ovs-vswitchd is the most important component in the Open
vSwitch because it realizes the core functions of Open vSwitch.
Ovs-vswitchd directly communicates with the kernel modules
of the Open vSwitch via the netlink protocol. During the run
time of the Open vSwitch, ovs-vswitchd keeps the information
of switch configuration on the database called ovsdb. Since
ovsdb is directly managed by ovsdb-server, ovs-vswitchd needs
to communicate with ovsdb-server through Linux socket
mechanism, aiming at obtaining or saving the information of
switch configuration. In other words, the information of switch
configuration can be persistent to ovsdb, even if the Open
vSwitch is restarted.

III. NETWORK ARCHITECTURE
A.SDN Architecture

Application Plane

App: App: Apps - Appn
ﬂ Northbound Interface

(API)

Control Plane
OpenFlow Controller
(NOX)
1 Southbound Interface

(OpenFlow Protocol)

Data Forwarding Plane
OpenvSwitch

Fig. 3 Diagram of SDN architecture

Fig. 3 demonstrates our three-layer SDN architecture with
including data forwarding plane, control plane and application
plane. The control and data forwarding planes communicate
with each other through the southbound interface (OpenFlow).
It indicates that the controller does not have to run on the
physical switch, which enables the flexible programmability of
the network.

The centralized controller NOX provides the northbound
API for each network application. In the application plane, the
user can customize the application that triggers the traffic flow
definition, and the application can communicate with the
controller via the northbound API. NOX controller then sends
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the new traffic flow to the data forwarding plane. We customize
the routing application in accordance with the service
requirements (e.g., traffic grooming), which makes the whole
network upgraded quickly without reconfiguring all switches
independently.

B. SDN Topology

To demonstrate the effectiveness of our routing function
with traffic grooming and the interactive process between
controller and switch, we establish a real SDN topology in Fig.
4. Our SDN topology is composed of a NOX controller, seven
OpenFlow-enabled switches and two hosts responsible for
sending and receiving packets. Host 1 sends packets to Host 2
by using Ping command, and two hosts both can send the
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connection request to the switch. The NOX controller is used to
dynamically monitor the status of the network topology. Both
NOX controller and switch can send OFPT ECHO
REQUEST message, but the receiver of this message is
required to send back OFPT ECHO REPLY message for
checking the connection availability between controller and
switch. If the connection is lost, the NOX controller will
dynamically update the current status of the network topology
before we trigger our routing application. Similarly, the switch
will send OFPT_PORT STATUS message to the NOX
controller if we vary the configuration of ports in the switch. As
discussed in Subsection I1.C, each switch maintains a flow table,
aiming at performing the flow-based packet forwarding.
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Fig. 4 Diagram of our SDN topology

C.SDN Environment

Fig. 5 shows the internal connection relationship of all
elements in our SDN environment. The IP address of the NOX
controller is 192.168.100.100, the IP address of Host 1 is
192.168.100.1, and the IP address of Host 2 is 192.168.100.2.

For network cards (Eth0, Eth1, and Eth2), the corresponding
IP addresses are 192.168.100.10, 192.168.100.11, and
192.168.100.12, respectively. For OpenFlow-enabled switches
Br0-Br6, the corresponding IP addresses are 192.168.100.20,
192.168.100.21, 192.168.100.22, 192.168.100.23,
192.168.100.24, 192.168.100.25, 192.168.100.26, respectively.

Host 1 is the source node, while Host 2 is the destination
node. The NOX controller implements our routing application
with traffic grooming. When the switch Br0O receives packets
from Host_1, BrO will send OFPT_PACKET_IN message to
the NOX controller. In a word, the NOX controller analyzes the
global status of the whole network topology, and it then
computes the shortest path between two hosts. In Fig. 5, the
shortest path from Host 1 to Host 2 is Br0 — Br6 — BrS. Next,

the NOX controller distributes OFPT FLOW_MOD message
to Br0, Br6, and Br5. Finally, the NOX controller builds a
complete datapath for packets from Host 1 to Host 2 based on
flow tables.

D.SDN Communication Process

The interactive process between controller and switch can be
described as follows:

1) The switch sends OFPT_HELLO message to the NOX
controller.

2) The NOX controller returns OFPT_HELLO message back
to the corresponding switch.

3) The NOX controller sends OFPT FEATURES
_REQUEST message to the switch for acquiring the
feature and function of this switch.

4) The switch sends the report of switch feature and function
to the NOX controller through returning OFPT
FEATURES REPLY message.

5) The NOX controller sends OFPT_SET CONFIG message
to the switch for configuring this switch. For example, the
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NOX controller informs that the maximal length of each
packet is 128 bytes.

6) The NOX controller sends OFPT_FLOW_MOD message
to the switch. Initially, the NOX controller deletes flow
tables by sending this message.

7) The NOX controller sends OFPT_PORT MOD message
to the switch for determining the behavior of physical ports
in the switch.

8) When the packet arrives at the switch, if this switch cannot
find any flow entries to match the packet in the local flow

NOX: 192.168.100.100
Hostl: 192.168.100.1
Host2: 192.168.100.2
Eth0: 192.168.100.10
Ethl: 192.168.100.11
Eth2: 192.168.100.12

table, it sends OFPT PACKET IN message to the NOX
controller.

9) After receiving OFPT PACKET IN message, the NOX
controller triggers the routing application to find the
shortest path for the packet, and it then distributes flow
tables to relative switches by using OFPT _FLOW_MOD
message. Note that if the result of flow statistics is greater
than threshold, the routing application with traffic
grooming will dynamically modify the idle time of flow
entries, in order to reduce the end-to-end delay.

Br0: 192.168.100.20
Brl: 192.168.100.21
Br2: 192.168.100.22
Br3: 192.168.100.23
Br4: 192.168.100.24
Br5: 192.168.100.25

Br6: 192.168.100.26

—_———— — — — Eth) | — — — — — — — —
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S
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I |
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Fig. 5 Diagram of our SDN environment

E. SDN-Based Traffic Grooming

Fig. 6 shows the process of traffic grooming. Each flow entry
has an idle_timeout and a hard_timeout associated with it. The
idle_timeout and hard timeout fields control how quickly
flows expire. If no packet has matched the flow entry in the last
idle_timeout seconds, or it has been hard timeout seconds
since the flow was inserted, the flow entry will be deleted, and
the switch sends a flow removed message to controller. In this

paper, the idle_timeout is set by us, but the hard_timeout is zero.

The flow entry expires after idle_timeout seconds if no received
traffic there is. Host 1 sends packets to Host 2 with constant
interval time, six seconds. Initially, the idle_timeout of the flow
entry is set as five seconds. Thus, when the packets arrive at the
switch, the flow entry matched with them has been removed,
and the flow tables have to be re-established for forwarding
these packets, which results in a long end-to-end delay. For this
end, we groom this kind of traffic in the manner of flow
statistics, and the NOX controller sends Aggregate Flow
Statistics message to switches for traffic statistics. If the value
of packet count field in the reply message is greater than a
threshold value, we will dynamically extend idle_timeout (i.e.
eight seconds), and re-insert flow entries into the flow tables of

relative switches along the computed route by using Flow Mod
message, with the objective of reducing the end-to-end delay.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Capture of Openflow Messages

To demonstrate the interactive communication process
between NOX controller and switch, we capture OpenFlow
messages using WireShark. The IP address of the NOX
controller is 192.168.100.100, while the IP address of the
network card EthO connected directly with the NOX controller
is 192.168.100.10. In Fig. 9, we can clearly see that the
interactive communication processes mainly include: 1) the
NOX controller establishes connections with switches (such as
Hello messages in Fig. 9); 2) the NOX controller configures the
switches in the initial run time (such as Features Request, Set
Config, Flow Mod, Port Mod and other messages in Fig. 9).
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root@hpc-virtual-machine: /home/hpc# ping 192.168.100.2

PING 192.168.100.2 (192.168.100.2) 56(84) bytes of data.
from 192.168.100.2: icmp_req=1 ttl=128 time=13.7 ms
from 192.168.100.2: icmp_req=2 ttl=128 time=4.41 ms
from 192.168.100.2: icmp_req=3 ttl=128 time=0.984 ms

from 192.168.100.2: icmp_req=4 ttl=128 time=0.989 ms
from 192.168.100.2: icmp_req=5 ttl=128 time=1.08 ms

--- 192.168.100.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4068ms
rtt min/avg/max/mdev = 0.984/4.250/13.777/4.942 ms

Fig. 7 Experimental result of successful packet forwarding

Default TP Monienng Fouting FlowTiacer
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S |S0M commard to NOX component
{*typet amimEnd" reques® ‘nade Dope al') SerHl

Fig. 8 GUI information of the NOX controller

Figs. 10 and 11 show the WireShark captures of Flow Mod
message before and after traffic grooming, respectively. The
source IP address is 192.168.100.1, while the destination
address is 192.168.100.2. The input port is No. 6, while the
output port is No. 7 for forwarding packets. Fig. 10
demonstrates that the idle time of flow entry is five seconds
before executing traffic grooming, while eight seconds after
executing traffic grooming in Fig. 11. These results prove the
feasibility and effectiveness of our developed routing
application with the function of traffic grooming.

In our routing application, the data structures of routing
information mainly include: 1) Identifier (ID) of the datapath
(i.e., Routeld), and it also includes the source node of the

datapath (i.e., the source node Sdp) and the destination node of
the datapath (i.e., the destination node Edp); 2) Path links, i.e., a
link list (list<Link>), and each link also includes the destination
datapath (i.e., dpdst), as well as output and input ports (i.e.,
outport and inport) of the destination datapath. For example,
Table I1 shows the data structure of routing information for the
shortest path BrO — Br6 — Br5 from Host 1 to Host 2.

When the NOX controller receives the routing request from
Br0, it will assign No. 6 output port to BrQ by using Flow-Mod
(OFPT_FLOW_MOD) message. Similarly, the NOX controller
will assign No. 4 output port to switch Br6. As a result, a
complete datapath has been established.
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Flter: of z| Expression... Clear Apply
Mo, Time Source Destination Protocol Length Info
14 0.224566 192.168.100.10 192.168.100.100 oFp 74 Hello (sM) (BE)
16 0.224653 192.168.100.10 192.168.100.100 OFP 74 Hello (sM) (BB)
17 0.224784 192.168.100.10 192.168.100.100 OFP 74 Hello (sM) (BB)
21 0.226054 192.168.100.100 192.168.100.10 OFP 74 Hello (5M) (BB)
22 0.226275 192.168.100.100 192.168.100.10 OFp 74 Features Request (C5M) (88)
25 0.226596 192.168.100.10 192.168.100.100 oFp 242 Features Reply (C5M) (1768)
26 0.226837 152.168.100.100 192.168.100.10 OFP 74 Hello (5M) (BB)
28 0.227185 192.168.100.100 192.168.100.10 aFP 74 Features Reguest (C5M) (8B)
30 0.227475 192.168.100.100 192.168.100.10 oFP 74 Hello (SM) (8B)
31 0.227567 192.168.100.10 192.168.100.100 aFpP 290 Features Reply (csu) (2248)
33 0.227980 192.168.100.100 192.168.100.10 oFP 74 Features Request (csM) (8e)
35 0.228298 192.168.100.10 192.168.100.100 OFP 290 Features Reply (Csu) (2248)
36 0.228472 192.168.100.100 192.168.100.10 OFP 78 set config (CsM) (128)
37 0.228824 192.168.100.100 192.168.100.10 oFP 78 set config (csM) (128)
38 0.229043 192.168.100.100 192.168.100.10 aFP 78 set config (CcsM) (128)
39 0.229358 192.168.100.100 192.168.100.10 OFP 90 vendor (sM) (24B)
40 0.229591 192.168.100.100 192.168.100.10 OFF 90 vendor (sm) (248)
42 0.229824 192.168.100.10 192.168.100.100 OFF 102 error (sM) (36B)
44 0.229936 192.168.100.10 192.168.100.100 oFF 102 error (5M) (368)
45 0.230172 192.168.100.100 192.168.100. 10 OFF 90 vendor (sm) (248)
47 0.230536 192.168.100.10 192.168.100.100 oFF 102 error (5M) (368)
48 0.230553 192.168.100.100 192.168.100.10 oFpP 138 Flow Mod (CsM) (728)
49 0.230969 192.168.100.100 192.168.100.10 oFpP 138 Flow Mod (csM) (728)
50 0.233146 192.168.100.100 192.168.100.10 oFpP 98 port Mod (csM) (328)
51 0.233462 192.168.100.100 192.168.100.10 oFpP 98 port Mod (csM) (328B)
57 0.257566 192.168.100.100 192.168.100.10 aFp 98 port Mod (CsMm) (328B)
58 0.257875 192.168.100.100 192.168.100.10 oFP 98 port Mod (CsM) (328B)
60 0.258120 192.168.100.100 192.168.100.10 OFP 98 port Mod (CcsM) (328)
62 0.262093 192.168.100.100 192.168.100.10 oFP 138 Flow Mod (CsSM) (728)
63 0.263125 192.168.100.100 192.168.100.10 OFP 98 port Mod (CSM) (32B)
64 0.263208 192.168.100.100 192.168.100.10 OFP 98 Port Mod (Csm) (328)
66 0.263468 192.168.100.100 192.168.100.10 OFP 98 Port Mod (CsM) (328B)
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Fig. 9 Wireshark capture of OpenFlow messages

Frame 934: 146 bytes on wire (1168 bits), 146 bytes captured (1168 bits)

Ethernet II, Src: vmware_f3:9c:12 (00:0c:29:f3:9c:12), Dst: HonHaiPr_15:d8:4c (90:fb:a6:15:d8
Internet Protocol Version 4, src: 192.168.100.100 (192.168.100.100), Dst: 192.168.100.10 (192.168.100.10)
Transmission Control Protocol, Ssrc Port: 6633 (6633), Dst Port: 57764 (57764), seq: 2329, ack:

= OpenFlow Protocol
= Header
version: 0x01
Type: Flow Mod (Csm) (14)
Length: 80
Transaction ID: 284
= Flow Modification
= Match

Idle Time (sec) Before Discarding: 5

Match Types

Input Port: &

Ethernet src Addr: asustekc_f9:0f:27 (f4:6d:04:f9:0F:27)
Ethernet Dst Addr: vmware_8f:eb:fe (00:0c:29:8fF:eb:fe)
INput WLAN ID: 6353353

Input VLAN priority: O

Ethernet Type: ARP (0x0808)

IPv4 DSCP: O

ARP Opcode: reply (2)

IP Src Addr: 192.168.100.1 (192.168.100.1)

IP Dst aAddr: 192.168.100.2 (192.168.100.2)

TCP/UDP Src Port: 0 (0)

TCP/UDP DsT Port: 0 (0)

Cookie: Ox0000000000000000
command: New flow (0)

Max Time (sec) Before Discarding: O

Priority: 32768

Buffer ID: 288

out Port (delete* only): None (not associated with a physical port)
Flags
= output Action(s)

=

Action
Type: Ooutput to switch port (0)
Len: 8
Output port: 7
Max Bytes to Send: O
# of Actions: 1

:4cC)

2509,

Len:

80

Fig. 10 Flow-mod message before traffic grooming
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Frame 25881: 146 bytes on wire (1168 bits), 146 bytes captured (1168 bits)
Ethernet II, Src: Vmware f3:9c:12 (00:0c:29:f2:9¢c:12), Dst: HonHaiPr_15:d8:4c (90:fb:a6:15:d8:4c)
Internet Protocol Version 4, Src: 192.168.100.100 (192.168.100.100), Dst: 192.168.100.10 (192.168.100.10)
Transmission Control Protocol, Src Port: 6633 (6633), DSt Port: 57764 (57764), Seq: 58441, ack: 333653, Len: 80
openFlow Protocol
= Header
version: O0x01
Type: Flow Mod (CsM) (14)
Length: 80
Transaction ID: 536
= Flow Modification
= Match
Match Types
Input Port: ©
Ethernet src addr: Asustekc_f9:0F:27 (f4:6d:04:F9:0f:27)
Ethernet Dst addr: wvmware_8f:eb:fe (00:0c:29:8F:eb:fe)
Input VLAN ID: 653535
Input VLAN priority: O
Ethernet Type: ARP (0x0806)
IPv4 DSCP: O
ARP Opcode: request (1)
IP src Addr: 192.168.100.1 (192.168.100.1)
IP Dst Addr: 192.168.100.2 (192.168.100.2)
TCP/UDP Src Port: 0O (0)
TCP/UDP DsT Port: O (0)
Cookie: Ox0000000000000000
command: New Tlow (0)
Max Time (sec) Before Discarding: O
Priority: 32768
Buffer ID: 1140
out Port (delete® only): None (not associated with a physical port)
Flags
= output action(s)
= Action
Type: Output to switch port (0)
Len: 8
Output port: 7
Max Bytes to Send: O
# of actions: 1

DEEBB

Fig. 11 Flow-mod message after traffic grooming

OFPT_FEATURES_REPLY (xid=0u1): dpid:no0eeneddc3basds
n_tables:255, n_buffers:2sé
capabliities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actlons: QUTPUT SET_VLAN_VID SET _VLAN_PCP STRIP_VLAN SET DL SRC SET DL_DST SET_WH_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP DST E
QUEUE
2(patch-8-1): addr:a6:5c:d5:0f:aa:a5
config: NGO _FLOGD
state: B
speed: 100 Mbps nowW, 180 Mbps max
4(patch-8-2): addr:le:3e:0e:85:3a:6d
config: B
state: B
speed: 100 Mbps now, 100 Hbps max
tpatch-8-6): addr:92:16:78:78:2d:94
conflg:  NO_FLOGD
state: [
speed: 106 Mbps now, 188 Mbps max
Tlethl): addr:@6:ed:4c:3b:98:d5
config: b
state: 0
current:  100MB-FD AUTO_NEG
advertised: 10MB-HD 10MB-FD 188MB-HD 188MB-FD CORPER ALTO_NEG
supparted: 18MB-HD 1BMB-FD 188MB-HD 188MB-FD COPPER AUTO_NEG
speed: 160 Mbps now, 1080 Mbps max
LOCAL(bra): addr:®6:ed:dc:3b:98:d5
config: b
state: b
speed: 100 Mbps now, 180 Mbps max
OFPT_CET_CONFIG_REPLY (x1d=Bx3): frags=normal miss_send_len=8

Fig. 12 Detailed information of Br0

B. Routing Analysis Based on Flow Tables switches and their local flow tables in the SDN environment.
In this subsection, we demonstrate the effectiveness of our  After ex.ecuti.ng the cgmmand OVS'Othl show br0, we can pbtain
routing application by viewing the detailed information of all ~ the detailed information of Br0, which can be seen in Fig. 12.
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We can see that the datapath id (dpid) of Br0 is
000000e04¢3b98d5, the number of flow tables is 255, and the
maximal number of packets is 256 in the buffer. In Br0, No. 2
port connects with Brl, No. 4 port connects with Br2, No. 6
port connects with Br6, and No. 7 port connects with Eth1. This
information is consistent with that of Fig. 5. After executing the
command ovs-ofctl dump-flows brO, we can obtain the flow
table of Br0. Similarly, we can obtain the flow tables of
Brl1-Br6. Finally, the summary information of all flow tables
from Br0-Br6 is in Table III.

The IP address of Host 1 is 192.168.100.1, and the IP
address of Host 2 is 192.168.100.2. When Host 1 sends
packets to Host 2, there is no flow table in Br0 initially. But
when the packet arrives at Br0, Br0 sends OFPT_PACKET IN
message to the NOX controller. After receiving this message,
the NOX controller analyzes the global status of the whole
network topology. Next, the NOX controller establishes
appropriate flow tables for the routing request, and it then
distributes flow tables to relative switches. So, the distributed
flow tables can be seen in Table III. After that, the packet will
be forwarded according to the bold routing information in
Table III. More specifically, BrO first receives the packet from
No. 7 port and sends the packet to Br6 from No. 6 port. Bro
receives the packet from No. 2 port and sends the packet to Br5
from No. 4 port. Finally, Br5 receives the packet from No. 6
port and sends the packet to Eth2 from No. 7 port. Obviously,
the shortest path from Host 1 to Host 2 is Br0 — Br6 — Br5.

TABLE 1T
DATA STRUCTURE OF SAVING ROUTING INFORMATION
Path Routeld Path
FromBrOtoBr5 Sdp Edp dpdst outport inport
Br0 — Br6 - Br5 Br0 Br5 Br0— Br6 6 2
Br6 — Br5 4 6
TABLE III

SUMMARY INFORMATION OF FLOW TABLES
Destination IP Output

Input Source IP

Open vSwitch port address address port

Br0 7 192.168.100.1 192.168.100.2 6
6 192.168.100.2  192.168.100.1 7

Brl No flow table

Br2 No flow table

Br3 No flow table

Br4 No flow table

Brs 6 192.168.100.1 192.168.100.2 7
7 192.168.100.2  192.168.100.1 6

Br6 2 192.168.100.1  192.168.100.2 4
4 192.168.100.2  192.168.100.1 2

C.Simulation Results

In this paper, we consider two performance metrics of our
routing application in the real SDN environment: CPU
utilization of NOX and average delay of sending packets from
Host 1 to Host 2 before and after executing traffic grooming.
We first evaluate the CPU utilization of NOX with different
flow interval times, and the corresponding results are shown in
Fig. 13. The NOX controller accounts for path computation and
provisioning on a virtual machine with 1 Processor and 1 GB
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Fig. 13 CPU utilization of NOX

To evaluate the CPU utilization of NOX in the case of
different loads, Host 1 sends 15 packets to Host 2 with the
flow interval time of one, two and five seconds, respectively.
From Fig. 13, we can see that when the flow interval time is one
second, the NOX controller will be very busy and highly CPU
loaded. But when the flow time interval increases to two or five
seconds, the CPU load is sharply alleviated.

Fig. 14 compares the end-to-end delay before and after
executing traffic grooming, the horizontal axis is the packet
arrival sequence, while the vertical axis records the end-to-end
delay including the propagation time of OpenFlow message
and the processing latency of the NOX controller. The average
end-to-end delay is shown in Fig. 15, and we can clearly
observe that the delay quickly decreases after executing traffic
grooming. Therefore, the routing application with traffic
grooming achieves the objective of reducing the end-to-end
delay by dynamically modifying the idle time of flow tables.
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Fig. 14 End-to-end delay
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Fig. 15 Average end-to-end delay

V.CONCLUSION

In this paper, we have experimentally setup a real SDN
environment by using NOX controller, Open vSwitch and
OpenFlow protocol, and the routing application with traffic
grooming was implemented for reducing end-to-end delay. The
NOX controller has been installed in Ubuntu-10.04, and it has
been successfully used to control all switches in the topology;
Open vSwitch has been installed in Ubuntu-12.04. The host
with including Open vSwitch has three network cards, and
these network cards connect NOX controller, Host 1 and
Host 2, respectively. Open vSwitch has been successfully used
to build a virtual network topology. Finally, our routing
application with traffic grooming has been performed within
the NOX controller, and the experimental results have
demonstrated the effectiveness of our routing services.
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