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Abstract—This paper will explore integration model between 

GIS–SCADA system and enclosure quantification model to approach 
the impact of failure-safe event. There are real demands to identify 
spatial objects and improve control system performance. 
Nevertheless, the employed methodology is predicting electro-
mechanic operations and corresponding time to environmental 
incident variations. Open processing, as object systems technology, is 
presented for integration enclosure database with minimal memory 
size and computation time via connectivity drivers such as 
ODBC:JDBC during main stages of GIS–SCADA connection. The 
function of Geographic Information System is manipulating power 
distribution in contrast to developing issues. In other ward, GIS-
SCADA systems integration will require numerical objects of process 
to enable system model calibration and estimation demands, 
determine of past events for analysis and prediction of emergency 
situations for response training. 

 
Keywords—Air dispersion model, integration power system, 

SCADA systems, GIS system, environmental management.  

I. INTRODUCTION 

PEN systems as innovation technology are developed to 
upgrade traditional control process in recent power 

system. The mean application such as integrating GIS–
SCADA is no longer considered a stand–alone system. It is the 
key function of integration different objects for improvement 
interoperability and independences in applicable forms. These 
interfaces communicate in systematic standards to exchange 
between layers and perform query based structure and 
operations, depending on service—oriented architecture [1]. In 
traditional integration, the geographical data with other 
electrical elements, attributes and parameters are kept in GIS 
spatial database [2]. The analysis will require multiple data 
structures and software that support a wide range of spatial 
queries and promote statistical and deterministic modeling. 
Spatial data structure forms refer to geo-referenced data as 
represented and stored in computer. Frank and Barrera [3] list 
four major elements that spatial data structures are formed in 
layers as:  
1. Type of geometrical data (point versus region) 
2. Object handling (non-fragmenting versus fragmenting) 
3. Retrieval (direct versus hierarchical) 
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4. Subdivision of space (regular versus data determined) 
A modeling system must provide a generalized data 

structure for the simulation distribution as in Fig. 1 [4]. 
Landscape, wind direction and cooling tower systems are 
described parameters that influence transport processes. These 
processes are modeled easily using matrices or "grid": A 
matrix with n rows and m columns of quadratic cells with an 
equal cell-length size. In GIS systems, data structure is 
represented in either raster (region, fragmenting, direct, and 
regular) or vector (region, non-fragmenting, direct, data 
determined) as acquired from Satellite Monitoring Stations. 
The component, such as line, is stored in a sequence of points 
with end edge defines nodes with geometric coordinate (, у, 
Ζ) and polygon name (ID). However, solutions of geometrical 
problems are employed to use the mathematical formulation of 
Euclidean geometry. Euclidean geometry is based on a 
continuous space consisting of an infinite number of points. 
Analytical geometry is convenient mapping to the coordinate 
space and relies on real numbers where between any two 
numbers another one exists. This is necessary to represent the 
property of Euclidean geometry in which between any two 
points, another one can be inserted [5]. 

II. OBJECT ORIENTED DATABASE FEATURES 

Main merits of OODBSs are the modeling of power 
systems, because objects reflect a "natural" view of the world 
that are reflected in software model, the reusability and 
extensibility of object components influence application as a 
result of data abstraction, inheritance, and polymorphism 
capabilities. The possibility of merging most application into 
database schema refers to data encapsulation procedure. The 
graphical structure is associated to objects as explored in Fig. 
2 [6], [7]. 

At the intentional (schema) level, a database is defined by a 
collection of inter-related object classes and is represented by 
an interrelated object graph (i.e., university dataset). The main 
classes are grouped into two general categories as follows: 
1. The non-primitive-class which represents a set of objects 

of interest in an application world, each of which is 
assigned a system-wide unique object identifier (OID) and 
its data are explicitly entered in database by the user, 

2. The primitive-class which represents a class of self-named 
objects serving as a domain for defining other object 
classes, such as a class of symbols or numerical values. 
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Fig. 5 System of Polish Resin Demineralizer  
 

A. Criticality Analysis Approach   

Weather analysis defines failure for safety as behavior that 
constitutes a hazard for safe continued operation, or for 
reliability as real-time response behavior, it can be measured 
in probabilistic terms. So, the most critical properties that an 
ideal emergency shutdown (ESD) system should have are: 
o High availability is "1" when the system is always 

working (A= Uptime /Total time) 
o High reliability means that systems may have to achieve 

failure less than, 10-3 to 10-6 failure per hour, while 
o Safety critical system properties often require failure rates 

in the range of 10-7 to 10-12 failure per hour. 
o Fail—safe operation means that in case of failure of ESD 

system, i.e. the system is no longer able to recognize a 
logic control to operate shutdown system, it will, through 
its control output, shut the system down for safety. 

The above figures refer not to general system reliability, but 
to the incidence of critical failure [17].  

The system design has to satisfy the safety—critical 
criterion with critical failure rate falling between 10-7 and 10-12 
failure per hour. Failure rate of a system can be estimated 
directly in a test environment or calculated from reliability 
data of known failure rate of smaller components of the 
system. So, the system components that are most likely to 
cause malfunction are carried with failure rates assigned to 
possible bottom level causes using MS Excel® worksheet. 

The basic figure of entire system is reflecting possible 
failure rate components have been estimated from elementary 
process using FMEA [18]. The sequence of dependent fail-
safe condition is described failure mechanism from physical 
entities of device components (e.g., small elements and 

measurement test). These failures and their causes are made 
visible by surveying the most critical element of the system 
according to FTA; however, FMEA method can apply the 
failure rate and significant effect from archived detection of 
failure rate records and significant effects for management 
power system.  

The criticality value of failure mode is a number calculated 
using pervious parameters to interpret component reliability at 
operation conditions as given in equation [18]: 

 

Cm =  . . p .t          (2) 
 

where, Cm = Criticality number for failure mode;  = 
Conditional probability;  = Failure mode ratio; p = Part 
failure rate; t = Duration of time expressed in hours or in 
number of operation cycle or inspection period. 

The total system failure rate is found to be 76.19 failures in 
106 hour (in 114 year). This figure shows all system failures, 
but it should be stressed that they are not critical. Several 
scenarios have been applied to the system and the most severe 
condition is found 8.84 fail at 10-7 hour at turbine system with 
other components as determined from FMEA results.  

B. Composite Relation Model   

The consequence has been estimated by performing 
composite calculation for cross applications of Gaussian 
plume model [19]. The meteorological data (i.e., air 
temperature, and wind speed), is collected from observation 
stations to estimate the rate of deposition according to a 
particular point source emission. Based on the coefficients 
received from [20] and [21], Gaussian is specified parametric 
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equation of dispersion model to describe the concentration 
levels of oxides surround the facility from: 
 

, , 	
	 	

	 	        (3) 

 
where: C is concentration of gas in mass per volume (ppm); 
QR2 is rate of emission in mass per unit time (kg/s); u is the 
average wind speed; y, z are distance in crosswind direction 
and elevated source; σy σz are standard deviation of lateral and 
vertical concentration distribution in diffusion direction 
(dispersion coefficients) 

Gaussian plume model employed Sutton's theory [22] to 
specify diffusion of gases in lower atmosphere and suite 
dispersion variation in cross and downwind distance with 
vertical dispersion coefficients (y). Other dispersion 
coefficients and deposition of airborne material is determined 
on the basis of [23]: 

 

	 , , ,             (4) 

 
Hosker graphs are used to determine the dispersion of most 

severe accidental emissions to atmosphere for analysis both 
rural and urban areas as well.  

The downwind concentration is depends on distances () to 
approach areas according to wind speed, temperature and 
atmospheric stability classes in both open area as rural and 
urban terrain.  

IV. GEOSPATIAL VIRTUAL INTERPRETATION 

A GIS system has the ability to combine layers of 
information about a place for a better understanding of 
environmental damage. Several database drivers are connected 
via JDBC-ODBC for interpretation results in a virtual map 
such as the one shown in Fig. 6. The integration between 
drivers requires interfaces for measurement-based information 
which is necessary for estimation loads of other environmental 
variables. The drivers’ connection is supporting object 
relations for interpreting potential fail—safe modes of power 
system and monitoring network topology for removing 
violations constraint in case of emergency. The layers are 
depending on meteorological information of weather stations, 
SCADA real-time data and GIS to provide a powerful tool in 
automation control system. The described concentration-
contours are a parabolic shape cover a large area vicinity to 
the plant. These dispersion curves are predicting emission of 
power plant using PC software system known "SURFER". 

 

 

Fig. 6 Dispersion in concentration levels at power plant 
 

V. ELEVATION EFFECTS  

The model evaluates the effect of topographic features in 
critical—safety operations of power system. The solar 
radiation is warming surface to influence dispersion and 
hence, linear variation of coefficients as determined in 
Gaussian plume model. The elevation diffusion over plume 

dispersion in Fig. 7 is comparing concentration contours 
which are higher in urban area, five times as evaluated in 
analysis methods. At higher concentration levels, the density 
of air increases within wider areas to slow down dispersion 
and expand plume to the elevation effects. The dispersion in 
crosswind varies with vertical variations along downwind 
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dispersion pollution with integration to GIS. These experiences provide a 
dynamic stability to switch work between objectives in different environment 
conditions and improve synthetic operations in system technology 

 


