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Abstract—In this paper, we consider the MU-MISO downlink
scenario, under imperfect channel state information (CSI). The main
issue in imperfect CSI is to keep the probability of each user
achievable outage rate below the given threshold level. Such a rate
outage constraints present significant and analytical challenges. There
are many probabilistic methods are used to minimize the transmit
optimization problem under imperfect CSI. Here, decomposition
based large deviation inequality and Bernstein type inequality convex
restriction methods are used to perform the optimization problem
under imperfect CSI. These methods are used for achieving improved
output quality and lower complexity. They provide a safe tractable
approximation of the original rate outage constraints. Based on these
method implementations, performance has been evaluated in the
terms of feasible rate and average transmission power. The
simulation results are shown that all the two methods offer
significantly improved outage quality and lower computational
complexity.
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I.  INTRODUCTION

N wireless communication, to leverage the new technique

linear precoding. It has been recognized as a practically
powerful method such as capable of controlling the quality of
service (QoS) and developing system throughput [1], [2].
Basically, linear precoding methods assume knowledge of the
downlink channels at the transmitter side, or simply CSI, and
using perform interference management. It is common to
assume perfect CSI. However, such an assumption is
measured optimistic for several reasons [3]. Initially, in the
time division duplex (TDD) setting, where there is reciprocity
between the uplink and downlink channels, CSI is obtained by
uplink channel evaluation. Such as, noise and limited training
will introduce errors into the obtained CSI. Secondly, in the
frequency division duplex (FDD) setting, where users
approximation the downlink channels and inform the
transmitter by rate-limited quantized CSI feedback. The
acquired CSI is beset by quantization errors, in addition to the
channel estimation errors, if the perfect CSI becomes outdated
where the user mobility speed is faster than the CSI update
speed. In common, imperfect CSI can lead to QoS outages.
So, we consider the case of imperfect CSI and investigate how
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CSI error effects may be mitigated through relevant system
designs. In reality, the topic is has received a great deal of
attention lately. In today researches focuses on achievable rate
analyses. Wherein the aim is, to study how performance
depends on the CSI errors and to obtain the perfect design of
channel estimation and CSI feedback schemes. There are more
than a few works in this way, where optimal resource
allocation for downlink/uplink training is studied [4], [S]. The
achievable rates of that scheme under imperfect CSI is much
challenged. In fact, many of the existing works fix the linear
precoder to be the quite simple zero-forcing (ZF) beam former
and analyze the subsequent ergodic achievable rate
performance for obtain a more tractable problem. This
perfectly assumes that the system is able to perform coding
diagonally a many number of differently faded systems [4],
[5]. There are few results on the outage rate metric, which is
annoyed by the scenario of one-frame coding over a slowly
fading environment. Most results in this work only apply to
the single-user multiple-input single-output (MISO) scenario
[6], [7]. In the downlink of such setups, which is a multiuser
MISO scenario, precoding methods can be applied to boost the
performance. The idea is to pre-determine signals at the
transmitter, and mitigate the channel-induced interference.
These techniques naturally demand that CSI is supplied at the
transmitter. However, as explained in the provision of perfect
CSl is often an involved task in wireless systems.

At present, the CSI error models considered in two different
design approaches. The first is the worst-case robust approach,
in which the model CSI errors are assumed to lie within a
bounded set, and the goal is to design the precoder. So that it
is robust against the worst-case QoS under the given CSI error
model. Such an approach has some notable contributions
includes the robust second-order cone program (SOCP)
methods [8], [9], the robust minimum-mean-square-error
(MMSE) methods [9], [10], and semi definite relaxation [11],
[12].

The second approach assumes a probabilistic CSI error
model. For example, the Gaussian model optimizes the
precoder design with respect to the average QoS under that
model. Such an average robust approach aims at good average
performance, as different to the good worst-case performance
required by the worst-case robust approach. This approach is
often used to solve stochastic optimization problems [13],
[14]. Hence, we to find approximate solutions that are
efficiently computable and can give good approximation
accuracies. For instance, the works we develop convex
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restrictions, or safe tractable approximations, of outage-based
QoS constrained precoder optimization problems. There are
also study outage-based power allocation methods under a
fixed precoder structure [16], [17].
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Fig. 1 Block diagram of the downlink multiuser MISO system

The main problem of interest is the transceiver optimization
with the goal of minimizing the total transmit power subject to
predefined users’ QoS targets. This paper considers outage-
based precoder optimization. Specifically, the scenario of
interest is the multiuser MISO downlink, and the Gaussian
CSI error model is adopted. We focus on a rate outage
constrained problem, in which the goal is to optimize users’
signal covariance matrices for total transmit power
minimization while satisfying achievable rate outage
constraints. We develop two novel convex restriction methods
for the aforementioned rate outage constrained problem using
probabilistic techniques. Furthermore, all two methods involve
convex conic optimization problems that can be efficiently
solved by an interior-point method (IPM). We use simulations
to demonstrate that the presented methods perform better than
the one developed in [14], [15], in terms of both
computational complexity and solution quality.

A. Notations

We use a to represent vector and A to represent matrices.
R" and C" stand for the sets of n-dimensional real and complex
vectors. SMand H" stand for the set of n*n real symmetric
matrices and complex Hermitian matrices, respectively. T and
H represent the transpose and conjugate transpose. Tr(A)
denote the trace. [, denote the n x n identity matrix. ||.|| and
|]-||g denote the vector Euclidean norm and matrix Frobenius
norm, respectively. E{.}, Prob{.} and exp(.) denote the
statistical expectation, probability function and exponential
function.

II. PROBLEM FORMULATION

We consider a multiuser MISO downlink scenario, where in
a multi-antenna base station sends independent messages to a
number of single-antenna users over a quasi-static channel.

Let N; denote the number of antennae at the base station,
and K the number of users. The received signal of user i,
i=1,...,K, is modeled as y;(t) = h;"x(t) +v;(t), where
h; € CM is the channel of user i; x(t) € CMt is the transmit
signal from the base station; is noise with distribution
CN(0,0;2).

Under the above system setup, the achievable rate of user i
may be formulated as

Ri = loga(1+5 hSh g i=1,.,K (1)

rxi hi Sichi+0;2

The problem of interest here is to design the signal
covariance matrices {S;};.,X via a rate constrained
formulation. The rate constrained problem (under perfect CSI)
is formulated as

ming, g, cyne Z{{:I T,(S) (2a)
sst.R;>r,i=1,.. K, (2b)
Sl,....,SKEO (2C)

where each 1; > 0 is a pre-specified constant and describes the
system’s requirement on user i’s information rate. The aim of
the rate constrained problem is to find a set of signal
covariance matrices such that the system’s rate requirements
are met using the smallest possible total transmission power.

To formulate the rate constrained problem under imperfect
CSI, it is essential to first describe the CSI error model. In the
imperfect CSI case, the actual channel of each user can be
represented by h; = h; +e;,i = 1,...,K. where h; € hVt is the
presumed channel at the base station, and e; € CNtis the
channel error vector. We adopt the commonly used Gaussian
channel error model. Consider the following probabilistically
robust design formulation:

ei""CN(O, Cl)

A. Rate Outage Constrained Problem

Given rate requirements and maximum tolerable outage
probabilities p, ..., px € (0,1) , solve

ming g epNe Zf:o T (S) (3a)
S. t.PTObhi.,CN(hi, Cl){Rl > ri} >1- Pi, i=1,..,K (3b)
Sy, Sk 2 0 G¢)

The above rate outage constrained problem emphasizes
service fidelity, a feasible solution to problem (3) guarantees
that under CSI errors, each user i. The rate outage constrained
problem (3) is not known to be computationally tractable. The
main challenge lies in the rate outage probability constraints in
(3b), which do not admit simple closed-form expressions.

III. SYSTEM MODEL

Our approach for tackling the rate outage constrained
problem (3) is to track a convex restriction approach, also
known as safe tractable approximation in the chance
constrained optimization journalism [18]. The idea is to
develop convex and efficiently computable upper bounds on
the rate outage probabilities in (3b).

f@rs)<p “4)

=> prob{efQ;e + 2Re{ef'r} + s >0} > 1 - p. ®)
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Hence, the constraint (5) gives a convex restriction or safe
approximation of the generally intractable probabilistic
constraint (6). Returning to the rate outage constrained
problem (3), we note that the rate outage constraints in (3b)
can be expressed as

11
Q; = Ciz(zsi — Yiei SICM? (6a)
1 _
= Cil/z(zsi — Y= SKh, (6b)
> H 1 . ;
si=h; (;Si - Zk:tisk) hi—a?y;=2"—-1 (6¢)

In formulating the rate outage constrained problem (3), we
follow an information theoretic development, where the
achievable rates to be optimized are based on the assumption
of vector-Gaussian encoded transmit signals.

A. Bernstein Type Inequality

The probabilistic constraint (5) can be approximated in a
conservative fashion using robust optimization techniques
[19], [20]. The following feasibility problem is a convex
restriction of (5).

Method I
Find Q,r,s,X,y

s.t. Tr(Q) —/2In(1/p).x+In(p).y +s =0,

flQllz +2r2 < x,

yI,+Q=0,
y=0.

Applying Method I to the rate outage constrained problem
(3), we obtain the following convex restriction problem is,

: K
miNg eyne v yer i=o Tr (Si)

s.t.Tr(Q;) — \/2 In (pi) x; +1n(p) . x; +In(p) .y + 5, =0,
i=1,....K 7

vec(Q;)
27"1'

‘ SXi,i,...,K,

Vily, + Q2 0,i=1,..,K,
Y1,V > 0, Sl, ...,SK > 0
The convex restrictions derived using method I can be

formulated as semi definite programs (SDPs) and hence are
polynomial-time solvable.

B. Decomposition Based Large Deviation Inequality

In this section, we propose another convex restriction
method. The method is based on the following large deviation
inequality for complex quadratic forms.

Method 11

Let v > 1/vZ be such that 8v =./In1/p, where 6 = 1 —
1/(2v?). Then the following feasibility problem is a convex
restriction of (5):

Find Q,r,s,x,y,

st.T.(Q) +s=2/Inl/p.(x +y),

Ll <
—|Irll < %,
7
v|[QllF < y.

The above convex restriction constrains only SOC
constrains, it can be solved more efficiently than the convex
restriction obtained using Method 1. Applying Method II to the
rate outage constrained problem (3), we obtain the following
convex restriction problem is,

: K
mlnSiEHN“‘i'J’iERi’ Zi=1 T-(S)

s.t.T.(Q)+s; =2yInl/p;. (x; +y),i=1,...K ®)
1 .
EHTL” <x,i=1,..,K,

vi|lvec(@)I| < yii=1,...K,
Sy, s, Sk = 0.

IV.RESULTS AND DISCUSSION

In this section presents simulation results to illustrate the
performance of these two convex restriction methods for
management the rate outage constrained problem (3). We
assume that the users’ noise powers are identical and given by

0,2 = =o0yx? £ 0% . We fix 62 = 0.01, unless specified. The
outage specifications for all users are also set the same
p1=+..=pg 2 p. The convex restriction formulations are

solved by the conic optimization solver SeDuMi, implemented
through the parser software CVX.

We start the simulation with simple case of N, = K = 5;
i.e., five antennae at the base station, and 5 users. The CSI
errors are spatially correlated and have standard circularly
symmetric complex Gaussian distributions; that is ¢; = - =
Cx = 0,2ly, where 6,2 > 0 denotes the error variance. We set
0.2 =0.01. The outage probability requirement is set to
p = 0.01, which is corresponding to having a 90% or higher
chance of satisfying the rate requirements.

In Fig. 2, where the feasibility rates of various methods are
plotted against the SINR requirements y. The two presented
methods yield feasibility rate higher than that of the
probabilistic SOCP method. Decomposition based large
deviation inequality method has the best feasibility rate
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performance. As can be seen from Fig. 3, decomposition Figs. 4 and 5 show that the performance under spatially

based large deviation inequality method yields the best correlated Gaussian CSI errors with Nt=5, K=5, p=0.1. As we

average transmission power performance followed the can see from the figures, decomposition based large deviation

probabilistic SOCP method. inequality method offers best performance over the other
methods.

Feasibility performance of various methods
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Fig. 2 Feasibility rate performance of the various method
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Fig. 3 Transmit power performance of the various method
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Feasibility performance of various methods
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Fig. 4 Feasible rate performance under spatially correlated gaussian CSI error

Transmit Power performance of various methods
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Fig. 5 Transmission power performance under the spatially correlated Gaussian error

V. CONCLUSION

In this work, we have formulated convex restriction
problem under the MU-MISO downlink scenario with
Gaussian CSI errors and studied a rate outage constrained
optimization problem. This rate outage probability constraints
problem, which are difficult to process computationally. To
tackle these constraints, we presented two methods-namely,
decomposition based large deviation inequality and Bernstein
type inequality-for obtaining efficiently computable convex
restrictions of the probabilistic constraints. Then we carried

out performance analysis to study the complexity and relative
tightness of these methods. Simulation results indicate that all
two methods provide good approximation to the rate outage
constrained problem.
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