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Method: On the Different Contact Schemes between

Continua and Discontinua
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Abstract—Recently, advanced geotechnical engineering problems
related to soil movement, particle loss, and modeling of local failure
(i.e. discontinua) as well as modeling the in-contact structures (i.e.
continua) are of the great interest among researchers. The aim of this
research is to meet the requirements with respect to the modeling
of the above-mentioned two different domains simultaneously. To
this end, a coupled numerical method is introduced based on
Discrete Element Method (DEM) and eXtended-Finite Element
Method (X-FEM). In the coupled procedure, DEM is employed to
capture the interactions and relative movements of soil particles as
discontinua, while X-FEM is utilized to model in-contact structures as
continua, which may consist of different types of discontinuities. For
verification purposes, the new coupled approach is utilized to examine
benchmark problems including different contacts between/within
continua and discontinua. Results are validated by comparison with
those of existing analytical and numerical solutions. This study
proves that extended-finite-discrete element method can be used
to robustly analyze not only contact problems, but also other
types of discontinuities in continua such as (i) crack formations
and propagations, (ii) voids and bimaterial interfaces, and (iii)
combination of previous cases. In essence, the proposed method
can be used vastly in advanced soil-structure interaction problems to
investigate the micro and macro behaviour of the surrounding soil and
the response of the embedded structure that contains discontinuities.

Keywords—Contact problems, discrete element method,
extended-finite element method, soil-structure interaction.

I. INTRODUCTION

IN numerical modeling of physical phenomena, using the

proper approach is the key factor to reach the realiable

and realistic results. The true granular nature of the soil

implies that we need to utilize discrete elements (DE) in

order to capture macro/micro-scale behaviour, [1] and [2]. On

the other hand, in many cases they can be in contact with

structures, which are continues media. In such cases, utilizing

the conventional finite elements (FE) is promising to model the

continuum. Therefore, the coupled finite-discrete element can

befit from the advantages of both approaches [3]. As the result,

a wide spectrum of dynamic problems related to geotechnical

engineering and in the context of soil-structure interaction

(SSI) can be treated in different scales [4]-[9]. Moreover, a

combined finite-discrete element method [5] allows DEs to

be meshed and treated as deformable media. However, with

the existence of discontinuities in the continua, a wide variety

of problems cannot be investigated effectively by FEM with
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respect to computational costs because it requires remeshing

and employing mesh adaptivity techniques as time evolves [4].

Different types of discontinuities may exist or appear

in a continues medium, especially in SSI problems such

as analyzing crack propagations in (semi)-buried structures,

debonding in multi-materials, the damage analysis of the

avalanche on the roads and so on. The reader is referred to

[4], [7], and [8] for a complete study of different interaction

problems between continua and discontinua. Generally, two

types of discontinuity may be examined within a physical

modeling, namely weak and strong discontinuity. Briefly, in

the former one, the solution (displacement) field continues,

while the gradients (strain and stresses) experience a jump.

Bimaterial and inclusions are of this type of discontinuity.

On the other hand, the latter type of discontinuity is

associated with a jump in both solution and its gradients

such as crack propagation and contacts. X-FEM is a relatively

new and robust approach in order to model discontinuities

in continua [4]. In this method, the problem domain is

independent of the generated mesh by introducing proper

additional functions into the solution of the governing

equation (i.e. enriched functions). In fact, the nature of the

discontinuity is captured in the solution field in contrast with

the conventional FEM in which the discontinuity is directly

defined within meshing procedure. Choosing the additional

functions depends on the phenomena under consideration. In

another words, based on the behaviour of the discontinuity,

it is required to chose functions with the same behaviour.

As a result, introducing a new framework based on coupling

of X-FE and DE methods allow us to model more complex

systems including discontinua and discontinuities within

discontinua.

In the following study, the governing equations of both

DEM and X-FEM are presented and discretized. Then,

the coupling procedure based on X-FE and DE methods

(X-FE-DEM) is introduced to trace the interaction between

two media. The main focus here is to address three different

types of contact including (a) contact between particles in

discontinua, (b) contact between two different continua, and

(c) contact between discontinua and continua. The DEM

accounts for the interaction and relative movement of soil

particles as discontinuum at both microscale and macroscale

levels (Type a). The unpredictable location and direction of

the movements of granular materials make DEM a promising

approach for analyzing these types of problems. With the

aid of proper enriched functions, X-FEM is able to model
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structures including different types of discontinuities. In such

a model, the selection of the enriched functions is conducted

based on the phenomenon under consideration. Here, the

aim is to model discontinuities in which the displacement

in the medium changes rapidly (i.e. strong discontinuity).

This rapid change is due to different continua that are in

contact with each other (Type b). As mentioned, by applying

X-FEM, complications related to meshing of the continuum

are eliminated and computational costs decreased significantly.

Moreover, the interchange of the induced forces between

two (DE and X-FE) domains is carried out carefully by

introducing interface elements at the boundary of the continua

and discontinua (Type c). Finally, proper numerical scheme

for explicit and implicit approaches (see Appendices B and

C) are employed to solve and compare the results of some

basic problems based on FE-DEM and X-FE-DEM.

II. PROBLEM STATEMENT

Consider the problem of a continuum defined in domain

Ω with boundaries Γu, Γt, and Γc, which are displacement,

traction, and inner contact boundary conditions. Moreover, the

continuum is in contact with a discontinum, defined in domain

Ω∗, along the boundary Γ∗
t . The superscript ”∗” emphasis on

the fact that the latter medium discontinues so the interaction

and the subsequent force transfer between two media occurred

at finite points, xp. The strong form of the problem related to

Fig. 1 The interaction of in-contact continua with discontinuum

the continuum can be written as:

∇.σ − ρü + ρb = 0, in Ω

σ = Dε, in Ω

ε = ∇su, in Ω (1)

with the boundary and initial conditions

σ.n = t̄, on Γt

σ.n = t∗, on Γ∗
d

σ.n = pc, on Γc

u = ū, on Γu

u = u0, at t = 0

u̇ = u̇0. at t = 0 (2)

In (1) and (2), ∇ is the Nabla operator and ∇s is expressed

as ∇s = 1
2

(∇T +∇)
. In addition, σ is the Cauchy stress

tensor, ε is the strain tensor, ρ is the density, b is the body

force vector, D is the elasticity constitutive tensor, u is the

displacement field, the upper dot(s) denotes the derivative(s)

with respect to time, n represents the outward normal on

the continuum, and t̄ and ū are prescribed traction and

displacement along the boundary. Moreover, t∗ and pc are

transferred forces between two media and the contact force

within the continuum, respectively. The proposed governing

equation is discretized within the forthcoming sections and

implemented to solve the interaction problem. In addition, the

governing translational and rotational equations corresponding

to each particle i of the discontinuum may be written as:

mir̈i = Fi, in Ω∗

Iiω̇i = Mi. in Ω∗ (3)

In which mi is the mass vector, ri is the position vector, Ii
is the inertia vector, ωi is the angular velocity, and Fi and

Mi are the transferred force and moments to the particle. In

the coupled method, equations sets (1) and (3) must be solved

simultaneously. To this end, the next sections are casting to

discretizing the equations and coupling them together in order

to solve the interaction problem. It is notable that the radiation

condition also must be satisfied.

III. GOVERNING DISCRETIZED EQUATION

A. DE Framework

In this framework, the state of the particles (discontinua)

are determined by utilizing the discrete (distinct) element

approach. Based on an explicit scheme, the translational and

rotational accelerations of the particles with respect to time

are obtained by knowing the total force (torque) and the

particles’ inertia, [9] and [10]. In the absence of rotational

effects the governing differential equations of the particle i
can be determined by the first equation of (3) as:

mi
d2

dt2
ri = Fi. (4)

In the study of granular materials, out-of-balance force

transfer includes deformation of the particles at contact points.

However, to model the contact, certain stiffness are defined and

converted to the external forces through the overlapping of

in-contact particles. As the result, in the absence of capillary,

fluid and external specified forces, the total force vector may

be written as [7]

Fi =
∑
j �=i

Fc
ij + Fg

i . (5)

Here, Fg
i is the gravitational force and Fc

ij is the transmitting

contact force to the particle i through the set of other particles

that are in contact [11].

Fc
ij =

{
0 , Δn

ij > 0

−Kn
ijΔ

n
ij − ηn d

dtΔ
n
ij , Δn

ij < 0,
(6)
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in which ηn is a viscous damping constant and Δn
ij is the

normal overlap of the two particles calculated as:

Δn
ij =

dij
2

− r̄ij , r̄ij =
ri + rj

2
, (7)

where ri and rj are the radii of in-contact spheres and dij is

the distance between the centers of the two spheres. Moreover,

Kn
ij is the normal stiffness between two particles:

1

Kn
ij

= r̄ij

(
1

kni
+

1

knj

)
, (8)

where kni is the stiffness of each particle. It is worth noting

that in this study the effect of normal contact is considered

and the reader is referred to [7] and [11] for sliding and

rolling contact.

Fig. 2 The contact model between two particles

B. X-FE Framework

In order to analyze the continuum region of the problem

the so-called X-FEM is utilized. In this framework additional

(enriched) functions are applied to the approximated solution

of the discretized governing equation in the conventional finite

element method [4].

u (x, t) = Nstd (x) ū (t) + Nenr (x) ā (t) (9)

In (9), the first and second terms are referred to standard

and enriched parts of the solution, Nstd (x) are the standard

shape functions, Nenr (x) are the enriched functions, and

ū (t) and ā (t) are the unknown solution vectors at time

t corresponding to standard and enriched terms of the

approximation field, respectively. The characteristics of the

enriched functions should coincide with the phenomena under

consideration. Here, the focus is on the contact problem;

therefore, it is required to select a function which shows

the discontinuity or jump on both solution field and its

corresponding gradients, displacement and strain, respectively.

To capture the kinematics of this type of jump, known as

strong discontinuity, the Heaviside (step) function can be

employed [12]. For the ith node, the corresponding enriched

shape function can be calculated as

Nenr
i = Nstd

i (x) [H (φ (x))−H (φ (xj))] . (10)

in which,

H (φ (x)) =

{
+1 φ (x) ≥ 0

0 φ (x) < 0.
, (11)

where φ (x) is the signed distance function, which is used to

locate the discontinuity interface [4]. To model the frictionless

contact, the penalty method is utilized in which the contact

constrains are defined by certain stiffness at the interface

between two bodies, Kcon (see Appendix.A). As here we

develop and investigate the normal contacts, the corresponding

elasto-plastic modulus tensor in contact stiffness reduces to

normal stiffness kn (penalty constant). Interestingly, while in

DEM framework the effect of penetration is introduced as

an external forces on other particles, in X-FE framework the

normal contact effects between two continuua are introduced

as a stiffness directly into the global stiffness matrix. The

discretized X-FEM equation can be written as [12] and [13]

M ¨̄U + KŪ − fext = 0 (12)

in which M, and K are the mass and stiffness matrices of the

continuum, fext is the external force vector, and Ū = 〈ū, ā〉 is

the vector of standard and enriched degrees of freedom. The

details of (12) are presented in Appendix A.

IV. COUPLED X-FE-DEM

In the coupled method, (1) and (3) must be solved at the

same time. A modified flowchart [10], Fig. 3, is proposed,

which is composed of three main fusions, namely initiation,

interaction, and solver fusion. The term ”fusion” is used to

emphasize on the fact that at each stage two different media

must be simultaneously analyzed.

Fig. 3 The solution procedure of X-FE-DEM

In initiation fusion, the geometry and material properties of

both domains and discontinuities are defined. The interaction

fusion consists of detecting contact between discontinua and

continua as well as interchanging forces between them. In

the last fusion, the governing equations associated with each

medium are solved with a step-delay of n [14]. In another
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words, for every n-step time evolution of the discontinua,

the state of the continuum is updated. Choosing the proper

value of n is crucial for the stability of the procedure [14].

In this work, the n is set to 10. Moreover, it is worth

noting that in this study the primary concern is to investigate

the normal contact phenomenon between different types of

elements. Here, specific enriched shape function is used, which

is not changed during the solution of the problem. However,

different enriched functions can be utilized during the solution

procedure depends on different physical phenomena such

as changing the mode of the crack in analyzing the crack

propagation problems.

A. Contacts

Based on Fig. 1, three different contacts are determined;

contact between particles of discontinua (Type a), contact

between two continua along the contact interface (Type b), and

contact between discontinua and continua (Type c). For Type

a, contact traction boundary condition method [7] is utilized

in which the interacting forces are added to the external

force vector of the bodies. In conventional FEM, the contact

problem is treated by the interface element method introduced

at the contact zone. However, in X-FEM the Type b contact

is modeled independent of FE mesh and the solution fields

of those elements which are cut by the contact interface are

approximated by additional specific enriched shape functions.

In two dimensional problems, the contact of the particles

and discontinua can be appeared in two cases; edge and

vertex collisions. In both cases the traction boundary condition

method is used in such a way that in the former case all

the forces are transmitted into the corresponding node, while

in latter one the applied forces are distributed between two

adjacent vertices. Fig. 4 depicts the two different collisions in

Type c contact.

Fig. 4 Type c contacts between the continuum and discontinuum

B. Interface Element

In order to properly treat the coupled method, an interface

element is defined to obtain geometrical parameters and force

distribution [14]. In this study, the interface element is a

segment with two nodes numbered 0 and 1 as shown in Fig.

5. These two nodes can be enriched depending on the location

of the contact interface.

Based on Kuhn-Tucker rule, the contact condition between

the particles and the continuum is addressed when the

following relationship for the normal gap function gn is hold:

gn =
(
x(c) − x(p)

)
.nΓ∗

t
≤ R. (13)

where x(c) and x(p) are the coordinates of particle center and

the contact point, respectively and R is the particle radius.

The contact normal nΓc and contact point x(p) are expressed

as [9] and [13]:

nΓ∗
t
=

x(c) − x(p)∣∣∣∣x(c) − x(p)
∣∣∣∣ (14)

x(p) =
x(1) + x(c).

(
x(1) − x(0)

)− x(0).
(
x(1) − x(0)

)
∣∣∣∣x(1) − x(0)

∣∣∣∣2 (15)

Fig. 5 Interface element

It is worth noting that if the following relationship is hold,

one may conclude that the particle is in contact at the edge,

otherwise, it is considered as node collision [13]:

δ <

(
x(p) − x(0)

)
.
(
x(1) − x(0)

)
∣∣∣∣x(1) − x(0)

∣∣∣∣2 < 1− δ, (16)

in which δ is a small value close to zero. Finally, the induced

force due to the particle i on the adjacent nodes can be

evaluated as

fc =
(
Nenh

)T
Fd−c, (17)

where Nenh = 〈Nstd,Nenr〉 and the superscript d− c denotes

the force transfer between dicontinua and continua

Fd−c =

{
0 , ri − gn > 0

kni (ri − gn) , ri − gn < 0,
(18)

C. DEM Time Step Equation

Equation (4) is a second-order differential equation, which

can be converted into the two first-order differential equation.

So, for the ith particle one may obtain

d

dt
ri = vi,

d

dt
vi = Fi/mi. (19)

The Adams-Bashforth-Moulton multi-step method [15],

[16] can be utilized to evaluate the system of equations of

the form d
dty = f(y, t) such that the position of particles at

the unknown time step n + 1 is predicted explicitly, y∗ and

corrected implicitly, y by means of (20).
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y∗ (tn+1) = y (tn) + ΔtDEM .f (y (tn) , tn)
y (tn+1) = y (tn) + ΔtDEM .f (y∗ (tn+1) , tn+1) (20)

in which ΔtDEM = tDEM
n+1 − tDEM

n . In order to assure the

stability of DEM, the critical time step Δtcr can be determined

ΔtDEM
cr = min

√
2mi

Ki
. (21)

It is worth noting that although the presented method takes

the advantages of both explicit and implicit formulations,

one may consider it as an explicit method as the corrected

state of the particle y (tn+1) in left-hand-side of (20) is

obtained by using the predicted state at of the particle

in right-hand side of the equation (i.e. f (y∗ (tn+1) , tn+1)).
Moreover, as the predictor-corrector procedure utilizes the

previous three solution points, for the first three steps the

4th order Runge-Kutta method may be employed. A brief

algorithm of the solution procedure is provided in Algorithm

2.

D. X-FEM Time Step Equation

For the continuum region of the problem, generalized

Newmark GN22 scheme is used in order to discretized the

time domain of the governing equation.

¨̄Un+1 =
1

βΔt2
(
Ūn+1 − Ūn

)
− 1

βΔt
˙̄Un −

(
1

2β
− 1

)
¨̄Un,

˙̄Un+1 =
γ

βΔt

(
Ūn+1 − Ūn

)
−

(
γ

β
− 1

)
˙̄Un −Δt

(
γ

2β
− 1

)
¨̄Un, (22)

where (β, γ) ∈ [0, 1] are Newmark parameters, which it is

required to satisfy γ ≥ 0.5, β ≥ 0.25 (γ + 0.5)
2

in order to

unconditionally stabilize the time integration procedure. For

the sake of simplicity and unless otherwise mentioned, Δt
without superscript is corresponding to X-FEM time step.

Finally, by substituting (22) in (12), one can obtain the

following non-linear equation that may be linearized and

evaluated by means of Newton-Raphson itterative algorithm.

The procedure of the algorithm is provided briefly in Appendix

B.

M¨̄Un+1 + KŪn+1 − GUn+1
= 0, (23)

where GUn+1
is a known vector obtained from previous time

step tn.

GUn+1
= fextUn+1

+M
(

1

βΔt2
Ūn +

1

βΔt
˙̄Un

+

(
1

2β
− 1

)
¨̄Un

)
. (24)

V. VALIDATION

In this section, some problems are solved in order to

verify the proposed method. In the first problem the effect of

normal contact stiffness on the over-lapping of the a particle is

investigated. Then, the Newmark scheme for the conventional

FEM and X-FEM is examined on an axial bar under the an

external time vary force. Afterwards, the coupled FE-DEM

and X-FE-DEM are compared under the external force due to

collision of particle(s).

Consider a spherical shape with a unit mass and the

normal stiffness k. In the first problem, the mass is released

from a height of 3m into the ground which is fixed.

Collisions happen through time as shown in Fig. 6 based on

Adams-Bashforth-Moulton scheme. In this figure, the effect of

normal stiffness is investigated. As it is seen, the overlap is

reduced as the contact stiffness is increased. It is notable that

the damping coefficient is calculated as ηn = 0.2
√

mi/ki.

Fig. 6 The effect of normal contact stiffness on the collision trajectory based
on Adams-Bashforth-Moulton scheme

Fig. 7 External dynamic load
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Fig. 8 The response of the system based on Newmark scheme due to the
external dynamic loading

Fig. 9 Comparison between FE-DEM and X-FE-DEM for case I

Fig. 10 Comparison between the response of the continua in FE-DEM and
X-FE-DEM for case I

For the next problem, the Newmark scheme is applied to

solve the problem of an axial rod exposed to a dynamic force

as shown in Fig. 7. The rod has a modulus of elasticity of

E = 3e7, cross section of A = 0.4, density of ρ = 2000 and

the height of L = 30m. It is worth noting that the Newmark

parameters β = 0.4 and γ = 0.6 and the penalty factor is

assumed 100E. Fig. 8 depicts the response of the free node

at the end of the rod under above-mentioned loading. As

it is seen, both FEM and X-FEM are in good agreement.

Figs. 9 and 10 illustrate the response of the system due

to interaction with one particle, Case I , in both FEM and

X-FEM framework. In Fig. 9, the emphasis is on the trajectory

of the particle in both approaches. It is evident that after many

collisions and damping, the relative movement of the particle

tends to zero. Moreover, Fig. 10 shows the response of the

free end-node for a selected period of time in order to show

the accuracy of the X-FE-DEM method. In the last problem,

the system is excited by means of two particles, Case II . All

three types of normal contacts are involved in the problem.

Figs. 11 and 12 show the solution of the system by virtue of

FE-DEM and X-FE-DEM, respectively. In addition, Figs. 13

and 14 take a closer look at each response corresponding to

the continua and discontinua and make a comparison between

FE-DEM and X-FE-DEM. It is depicted that both methods

coincide with each other with a good approximation. However,

as mentioned before, X-FE-DEM has advantages with respect

to mesh independency, which allows us to model different

types of discontinuities. It is worth noting that after a certain

time, (approximately 20 sec), the relative movement of the

system tends to be zero due to the radiation condition.

Fig. 11 FE-DEM modeling of the system in case II

Fig. 12 X-FE-DEM modeling of the system in case II

Fig. 13 Comparison between the response of the continua in FE-DEM and
X-FE-DEM for case II
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Fig. 14 Comparison between the response of the discontinua in FE-DEM
and X-FE-DEM for case II

VI. CONCLUSION

In this study, a coupled numerical method is introduced

based on DEM and X-FEM. The presented approach

(X-FE-DEM) has the capability of modelling continua

and discontinua, simultaneously. Moreover, due to mesh

independency of the X-FEM, modelling of different type

of strong and weak discontinuities are carried with a

computational cost efficiency. Here, the focus is on the

different normal contacts between media. Three main contacts

are determined within continua and discontinua as well as

between them. Two main examples in one dimension are

solved and the results are compared with of those from the

conventional FE-DEM. It is found that the results are in

a very good agreement with each other. As the result, by

extending the examples into the two and three dimension,

real complex geotechnical problems especially in SSIs can

be treated with more efficiency with respect to both accuracy

and computational costs. Moreover, due to flexibility of the

X-FEM other types of discontinuities such as bi-material,

crack propagation, and so on can be investigated thoroughly

for large-scale geotechnical problems.

APPENDIX A

X-FEM DISCRITIZATION EQUATION

The discretized equation of (12) can be written as:

(
Muu Mua

Mau Maa

){
¨̄u
¨̄a

}

+

(
Kuu Kua

Kau Kaa + Kcon

){
ū
ā

}

−
{

fext
u

fext
a

}
= 0, (25)

where

Mαβ =

∫
Ω

(Nα)
T
ρ NβdΩ

Kαβ =

∫
Ω

(Bα)
T D BβdΩ

Kcon =

∫
Γc

(
Nstd

)T
Dep NstddΓ

fext
α =

∫
Ω

(Nα)
T
ρ dΩ+

∫
Γt

(Nα)
T t̄ dΓ

+
∑
Γ∗
t

(Nα)
T Fd−c, (26)

in which (α, β) ∈ (std, enr) represent the standard and

enriched parts and Dep is elasto-plastic modulus tensor in

contact stiffness Kcon.

APPENDIX B

NEWMARK SCHEME ALGORITHM

The Newmark scheme algorithm for implicitly solve the

dynamic equation of (12) is shown in the following algorithm.

Algorithm 1: Newmark scheme for solving dynamic

equation implicitly

Initialization
Claculate K0, A0, A1, A2

Set Ū0,
˙̄U0,

¨̄U0 | initial conditions

foreach time step, n = 0, 1, ... do
Ū0

n+1 = Ūn

ΔŪ0
n+1 = 0

for iteration, i = 0, 1, ... do
Ūi+1

n+1 = Ūi
n+1 +ΔŪi

n+1

Newmark Scheme:

Calculate ˙̄Ui+1
n+1,

¨̄Ui+1
n+1 | Ūi+1

n+1, Ūn,
˙̄Un,

¨̄Un

Calculate Ji+1

Calculate RŪi+1
n+1

if convergence then
Break

end
ΔŪi+1

n+1 = − (
Ji+1

)−1 RŪi+1
n+1

end
end

In above algorithm RŪn+1 is the residual vector

corresponding to Eq.23, which may be written as:

RŪn+1 = K0Ūn+1 − Fext
n+1

− A0Ūn − A1
˙̄Un − A2

¨̄Un, (27)
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in which

K0 = − γ

βΔt

(
1

βΔt2
M + K

)

Fext
n+1 = − γ

βΔt
fextUn+1

A0 = − γ

βΔt

(
1

βΔt2
M

)

A1 = − γ

βΔt

(
1

βΔt
M

)

A2 = − γ

βΔt

((
1

2β
− 1

)
M

)
, (28)

and the Jacobian matrix J = K0

APPENDIX C

ADAMS-BASHFORTH-MOULTON ALGORITHM

In order to explicitly find the solution of (20), a two step

algorithm can be employed as shown here.

Algorithm 2: Adams-Bashforth-Moulton scheme for

solving dynamic equation explicitly

Initialization
Set y (t0) | initial condition

Runge-Kutta scheme:

Calculate y (t1), y (t2), y (t3) :
y (tn+1) = y (tn) + Δt

6 (S1 + 2S2 + 2S3 + S4)
foreach time step, n = 3, 4, ... do

Adams-Bashforth-Moulton scheme:

Calculate (predict):

y∗ (tn+1) =y (tn) +
Δt

24
[55f (y (tn) , tn)

− 59f (y (tn−1) , tn−1)

+ 37f (y (tn−2) , tn−2)

−9f (y (tn−3) , tn−3)] (29)

Calculate (correct):

y (tn+1) =y (tn) +
Δt

24
[9f (y∗ (tn+1) , tn+1)

+ 19f (y (tn) , tn)
− 5f (y (tn−1) , tn−1)

+f (y (tn−2) , tn−2)] (30)

end

in above algorithm, Si are expressed as

S1 = f (y (tn) , tn)

S2 = f
(

y (tn) + S1
Δt

2
, tn +

Δt

2

)

S3 = f
(

y (tn) + S1
Δt

2
, tn +

Δt

2

)
S4 = f (y (tn) + S3Δt, tn +Δt)

(31)
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