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On Tarski’s Type Theorems for L-Fuzzy Isotone
and L-Fuzzy Relatively Isotone Maps on

L-Complete Propelattices
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Abstract—Recently a new type of very general relational
structures, the so called (L-)complete propelattices, was introduced.
These significantly generalize complete lattices and completely lattice
L-ordered sets, because they do not assume the technically very
strong property of transitivity. For these structures also the main part
of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone
maps, i.e., the part which concerns the existence of fixed points and
the structure of their set. In this paper, fundamental properties of
(L-)complete propelattices are recalled and the so called L-fuzzy
relatively isotone maps are introduced. For these maps it is proved
that they also have fixed points in L-complete propelattices, even if
their set does not have to be of an awaited analogous structure of
a complete propelattice.

Keywords—Fixed point, L-complete propelattice, L-fuzzy
(relatively) isotone map, residuated lattice, transitivity.

I. INTRODUCTORY REMARKS

THE proofs of many different variants and generalizations

of Tarski’s fixed point theorem are substantially

dependent on transitivity. In [1], there were introduced the

(L-)complete propelattices, which do not assume transitivity in

any its form, but still (L-fuzzy) isotone maps have fixed points

on them and the set of all fixed points is a crisp complete

propelattice. A cost for generality of these structures is the fact

that analogous formulas expressing the least and the greatest

fixed point, which are included in the original Tarski’s theorem

[2], do not hold for them. On the other hand, we show that

also the so called (L-fuzzy) relatively isotone maps, which

generalize (L-fuzzy) isotone maps and for the crisp case are

presented in [3], have their fixed points, even if their structure

does not need to be a complete propelattice.

The main reason for introducing of (L-)complete

propelattices is the fact that a fuzzification of the proof

of Tarski’s theorem is for strong transitivity, see relation (47),

more or less trivial, but for weak transitivity, see relation

(45), during the “fuzzy transcription” some insurmountable

difficulties arise (see the concluding section). So, a natural

question is that if transitivity can be eliminated and what can

be achieved by this in fuzzy setting. If we want to formulate

an exact question and give a complete answer, first we have

to recall the original theorem from [2].

Theorem 1 (Lattice-theoretical fixpoint theorem). Let
(i) A = 〈A,≤〉 be a complete lattice,

F. Včelař and Z. Pátı́ková are with the Department of Mathematics, Faculty
of Applied Informatics, Tomas Bata University in Zlı́n, Nad Stráněmi 4511,
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(ii) f be an increasing function on A to A,
(iii) P be the set of all fixpoints of f .

then
the set P is not empty (1)

and
the system 〈P,≤〉 is a complete lattice; (2)

in particular we have∨
P =

∨
{x ∈ X | f(x) ≥ x} ∈ P (3)

and ∧
P =

∧
{x ∈ X | f(x) ≤ x} ∈ P. (4)

The question is, which from the facts (1), (2), (3) and (4)

and in what kind of form holds without the assumption of

transitivity in fuzzy setting. The answer is somehow surprising,

if we realize how irreplaceable (but maybe neglected) is the

role played by transitivity in the original proof of Theorem 1.

We show that even if we omit the fundamental assumption of

transitivity in the structure A = 〈A,≤〉, still – in crisp and also

in fuzzy setting – (1) and (2) keep holding and the structure

of P is a complete propelattice. Only relations (3) and (4) do

not need to hold.

II. PRELIMINARIES AND BASIC NOTIONS

Everywhere below we suppose that L = 〈L,∧,∨,⊗,→,
0, 1〉 is a complete residuated lattice, i.e., the algebra

〈L,∧,∨, 0, 1〉 = 〈L,≤〉 is a complete lattice. Properties of L
are well known from literature and if we need some of them,

we recall it at a relevant place. Now let us briefly summarize

only the most needed notions of the theory of fuzzy sets [4],

[5]. In theoretical parts let X �= ∅ be an arbitrary but fixed

universe set.
Every element Φ ∈ LX is an L-set, i.e., an L-set is a

map of the type Φ : X → L. Clearly ∅, X ∈ LX , where

∅(x) ≡ 0, X(x) ≡ 1 (x ∈ X). For a fixed α ∈ L α-cut of Φ
is the crisp set αΦ = {x ∈ X |Φ(x) ≥ α}. Especially, the set

Ker(Φ):= 1Φ = {x ∈ X |Φ(x) ≥ 1} = {x ∈ X |Φ(x) = 1}
is the kernel of Φ. If Ker(Φ) �= ∅, then Φ is a normal L-set,

otherwise it is subnormal.
Thank to completeness of 〈L,∧,∨, 0, 1〉 for an arbitrary

indexed system F = {Φλ ∈ LX |λ ∈ Λ} ⊆ LX the operations⋂F =
⋂

λ∈Λ

Φλ,
⋃F =

⋃
λ∈Λ

Φλ ∈ LX can be introduced.
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Then for all x ∈ X the following holds:

(⋂
F
)
(x) =

(⋂
λ∈Λ

Φλ

)
(x) =

∧
λ∈Λ

Φλ(x),

(⋃
F
)
(x) =

(⋃
λ∈Λ

Φλ

)
(x) =

∨
λ∈Λ

Φλ(x).

The inclusion Φ ⊆ Ψ holds if and only if Φ(x) ≤ Ψ(x) for

all x ∈ X; the L-set Φ is an L-subset of Ψ. Very important in

the next is the fact that with regard to completeness of L also

the algebra 〈LX ,∩,∪, ∅, X〉 = 〈LX ,⊆〉 is a complete lattice.

Every element � ∈ LX×X is a (binary) L-relation. For any

x, y ∈ X we write: (x� y) := � (x, y). Often, we work with

1-cut 1� ⊆ X ×X of the L-relation � . Then for x, y ∈ X
we write: x 1� y ⇔ (x� y) = 1. For fixed x ∈ X and

0 < α ∈ L, {α/x} is such an L-set that {α/x}(x) = α
and {α/x}(y) = 0 for all y �= x. If the universe set X =
{x1, x2, . . . , xn} is finite, we write the L-set A ∈ LX in the

form

A = {α1/x1 ,
α2/x2 , . . . ,

αn/xn},
where the terms with αi = 0 are omitted.

A crisp set ∅ �= A ⊆ L is usually identified with the relevant

L-set A ≡ ⋃
x∈A

{
1/x
}

. In other words, a crisp set is identified

with its membership function.

The following notion can be often used for testing of

“suitability” of fuzzificated notions (see Remark 1) or for

introducing of the properties which have no analogies in the

crisp case [6], [1].

Definition 1 ([6]). An element N (L) ∈ L (if it exists in L) is

a neutral of L if N (L) = N (L) → 0. The set of all neutrals

is denoted N(L).

If for some x0 ∈ X we have Φ(x0) = N (L), this fact is

interpreted like we have no information (positive nor negative)

about the statement “x0 is an element of Φ”. In L the so

called adjunction property keeps holding, i.e., for arbitrary

a, b, c ∈ L:

a⊗ b ≤ c ⇔ a ≤ b → c.

From here, we get the following simple chain of

implications, which derives some useful property of neutrals:

N (L) → 0 ≤ N (L) → 0 ⇒ (N (L) → 0)⊗N (L) ≤ 0 ⇒
⇒ N (L)⊗N (L) ≤ 0, i.e., N (L)⊗N (L) = 0. (5)

Finally, we recall two in literature common but substantial

definitions, which introduce the most important general

notions.

Definition 2 ([4], [7], [8]). An L-relation ≈ ∈ LX×X is an

L-equality if for any x, y, z ∈ X the following four conditions

are fulfilled:

(x ≈ x) = 1 (reflexivity);

(x ≈ y) = (y ≈ x) (symmetry);

(x ≈ y)⊗ (y ≈ z) ≤ (x ≈ z) (transitivity);

(x ≈ y) = 1 ⇒ x = y (crisp antisymmetry). (6)

The following definition apparently presents the simplest

possible variant of a singleton.

Definition 3 ([8]). A normal L-set Φ ∈ LX is an SC-singleton
(at the point x0) if there exists x0 ∈ X such that Ker(Φ) =
{x0}. An arbitrary SC-singleton at the point x0 we denote by

a unique symbol S[x0].

III. “CRISP” MOTIVATION AND FUNDAMENTAL NOTIONS

The notions presented here are not only of a motivational

character but they are fundamental for an extension of our

results into fuzzy setting. The basic idea is very simple: We

introduce all the notions, which concern posets or lattices

and which are not instantly dependent on the property of

transitivity, without this assumption and find out what happens.

In the next definitions we do not have to assume that A �= ∅
(the case A = ∅ is naturally implicitly included in all the

definitions).

Definition 4 ([1]). Let � ⊆ X × X be a reflexive and

antisymmetric relation, A ⊆ X and a ∈ X , then we say that1

- a is a lower propebound of A if ∀x ∈ A : a�x;

- a is an upper propebound of A if ∀x ∈ A : x� a;

- a is a propeleast element of A if a is a lower propebound

of A and a ∈ A; we denote a = pmin(A);
- a is a propegreatest element of A if a is an upper

propebound of A and a ∈ A; we denote a = pmax(A).

The relation � is a propeorder on X and the pair X =
〈〈X,=〉, �〉 is called a propeordered set.

It is clear from antisymmetry that the elements pmin(A)
and pmax(A), if they exist, are unique, and that is why we

presented their notations directly in the definition. The same

naturally holds also for the elements p inf(A) and p sup(A),
which are introduced in the following definition.

Definition 5 ([1]). Let X = 〈〈X,=〉, �〉 be a propeordered

set and let A ⊆ X . The lower propecone of A is the set L(A)
of all lower propebounds of A. The upper propecone of A is

the set U(A) of all upper propebounds of A. If there exists

a = pmax(L(A)), then a is the propeinfimum of A and we

denote a = p inf(A). If there exists a = pmin(U(A)), then

a is the propesupremum of A and we denote a = p sup(A).

Apparently, if p inf(A) and p sup(A) exist, the following

identities hold and they are independent on transitivity,

because only definitional relations, antisymmetry and

reflexivity are sufficient:

{p inf(A)} = L(A) ∩ U(L(A)). (7)

{p sup(A)} = U(A) ∩ L(U(A)). (8)

The next two definitions play a fundamental role even

for our results in fuzzy setting. The first one generalizes in

a crucial way the notion of a complete lattice.

Definition 6 ([1]). A propeordered set X = 〈〈X,=〉, �〉 is

a complete propelattice if for every set A ⊆ X there exist

1Let us remark that the prefix “prope” means “near”, “close to” in Latin.
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its p inf(A) as well as p sup(A). Especially, we denote ⊥ :=
pmin(X) = p inf(X) and � := pmax(X) = p sup(X).

With respect to (7) and (8) clearly � = p inf(∅) and ⊥ =
p sup(∅), still independently on transitivity.

Definition 7 ([1]). Let X = 〈〈X,=〉, �〉 be a propeordered

set. A map f : X → X is isotone on X iff

∀x, y ∈ X : x� y ⇒ f(x)� f(y);

the map f is relatively isotone on X iff

∀x, y ∈ X : f(x)� y & x� y & x� f(y) ⇒ f(x)� f(y).2

Obviously, every isotone map is relatively isotone, but the

opposite does not hold. The examples presented below show

that in our case relative isotony is a substantial generalization

of isotony. We denote the set of all fixed points of a map

f : X → X as Fix(f) = {x ∈ X |x = f(x)}.
The following statement shows that a great part of Tarski’s

fixed point theorem (more precisely (1) and (2)) keeps

holding even for complete propelattices. Let us mention

that propelattices are more general than some nontransitive

structures like for example weakly associative lattices [9],

[1]. The following Theorem 2 is only an immediate special

case of Theorems 3 and 4 for classical logical environment

represented by the two-element Boolean algebra L = 2, which

are presented further.

Theorem 2. Let X = 〈〈X,=〉, �〉 be a complete
propelattice, then for every relatively isotone map f : X → X
on X the set Fix(f) is nonempty. Moreover, if f is isotone on
X , then the system

F = 〈〈Fix(f),=〉, � ∩ (Fix(f)× Fix(f))〉
is a complete propelattice.

It is easy to find that the least cardinality of a complete

propelattice, which is not automatically transitive and hence

is not a complete lattice, is |X| = 5. The situation from

Theorem 2 can be partially demonstrated in a rather simple

example for |X| = 6.

⊥

�

x

y z

w

Fig. 1 Diagram for Example 1

2Here & denotes the classical logical conjunction.

Example 1. Let X = {⊥, x, y, w, z,�} and let the complete

propelattice X = 〈〈X,=〉, �〉 have the “Hasse diagram”

from Fig. 1. Obviously, � is not a transitive relation since

y�x, x�z and y�w, w� z, but (y, z) /∈ � ⊆ X ×X .

Now let us define the map f : X → X in this way:

f(⊥) = x, f(x) = w, f(y) = x, f(w) = w, f(z) = z
and f(�) = z. It is easy to verify that X = 〈〈X,=〉, �〉 is

really a complete propelattice, the map f is isotone on X and

Fix(f) = {w, z} �= ∅. Furthermore, pmin(Fix(f)) = w and

pmax(Fix(f)) = z. Now if we define the sets M∧, M∨ in

the following way, we have

M∧ := {x ∈ X | f(x)�x} = {w, z,�} (9)

M∨ := {x ∈ X |x� f(x)} = {⊥, x, y, w, z} (10)

Moreover, p inf(M∧) = w and p sup(M∨) = � and

simultaneously (by coincidence)

p inf(M∧) = w = pmin(Fix(f)); (11)

but because z = pmax(Fix(f)), � = p sup(M∨), only

pmax(Fix(f))� p sup(M∨) (12)

holds (and identity does not hold).

The rest of Theorem 2 demonstrates the next example.

⊥

�

s

x y

t

z

Fig. 2 Diagram for Example 2

Example 2. Let us have X = {⊥, s, t, x, y, z,�} and let

X = 〈〈X,=〉, �〉 have the “Hasse diagram” given by Fig.

2. Obviously, X is a complete propelattice. The relation

� ⊆ X × X is not transitive, because t�x, x� s and

t� y, y� s, but (s, t) ∈ � (and hence with respect to

antisymmetry (t, s) /∈ � ). Now let f : X → X be such

a map that f({⊥, s, t, x, y,�}) = {y} and f(z) = z. The

map f : X → X is not isotone, since (⊥, z) ∈ � but

(f(⊥), f(z)) = (y, z) /∈ �. Nevertheless, f is trivially

relatively isotone. Here Fix(f) = {y, z} �= ∅, but Fix(f)
is not a “complete subpropelattice”, because y and z are

incomparable.

The following almost obvious statement formulates an

analogy which holds clearly also for complete lattices.
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Lemma 1. Let X = 〈〈X,=〉, �〉 be a complete propelattice
and let A ⊆ B ⊆ X be arbitrary sets. Then the following
relations hold:

p inf(B)� p inf(A) and p sup(A)� p sup(B). (13)

Proof: Let us indicate the proof for the first from relations

(13), the second one can be shown analogously. Because X is

a complete propelattice, all elements in (13) exist according to

Definition 6. From Definitions 4 and 5 we have the following.

If A = ∅, then

� = p sup(X) = pmax(X) = pmax(L(∅)) = p inf(∅),
hence

p inf(B)��, that is p inf(B)� p inf(∅).
If A �= ∅, we gain the next simple chain of implications:

A ⊆ B ⇒ L(B) ⊆ L(A) ⇒
⇒ pmax(L(B))� pmax(L(A)) ⇒ p inf(B)� p inf(A).

The proof is finished.

Reflexivity of the relation � ⊆ X×X implies with regard

to equalities (9) and (10) that Fix(f) ⊆ M∧ and Fix(f) ⊆
M∨. From (13) the following relations immediately follow:

pmax(Fix(f))� p sup(M∨),
p inf(M∧)� pmin(Fix(f));

pmax(Fix(f))� p sup(M∧),
p inf(M∨)� pmin(Fix(f)). (14)

Relations (12) and (14) give a complete answer to the third

part of the question from the introduction. Without transitivity

equalities in (3) and (4) generally do not hold, but thank to

completeness all relations (14) hold. At the same time the first

two relations in (14) directly correspond to (3) and (4). The

fact that L = 2 is now the Boolean algebra with the support

{0,1} is not important here, since an analogy of these relations

holds generally for an arbitrary complete L (see relations (50)).

IV. FUNDAMENTAL NOTIONS IN FUZZY SETTING AND

BASIC FACTS

We extend the notions presented in the previous section

into fuzzy setting in a standard way. Let us mention that

≈∈ LX×X is everywhere below a fixed L-equality (see

Definition 2).

Definition 8 ([1]). Let an L-relation � ∈ LX×X be reflexive

and antisymmetric with respect to (w.r.t.) ≈, i.e., for every

x, y ∈ X:

(x�x) = 1 (reflexivity); (15)

(x� y)⊗ (y�x) ≤ (x ≈ y) (antisymmetry). (16)

Then � is an L-propeorder on X (w.r.t. ≈). The pair X =
〈〈X,≈〉, �〉 is an L-propeordered set.

The following definitions extend the notions from

Definition 5 into fuzzy setting. If nothing else is explicitly said,

we suppose that X = 〈〈X,≈〉, �〉 is a fixed L-propeordered

set (as for example in the following two definitions).

Definition 9 ([1]). Let Φ ∈ LX , then U(Φ) ∈ LX is the upper
propecone of Φ if

U(Φ)(x0) :=
∧
x∈X

(Φ(x) → (x�x0)), ∀x0 ∈ X; (17)

L(Φ) ∈ LX is the lower propecone of Φ if

L(Φ)(x0) :=
∧
x∈X

(Φ(x) → (x0 �x)), ∀x0 ∈ X. (18)

Special cases of (17) and (18) are for a fixed x0 ∈ X the

following notions: the upper propecone of x0 is the L-set

C∨
x0

∈ LX , for which

C∨
x0

:= (x0 �x), ∀x ∈ X; (19)

the lower propecone of x0 is the L-set C∧
x0

∈ LX , for which

C∧
x0

:= (x�x0), ∀x ∈ X. (20)

Relations (7) and (8) give in the following definition

immediate extensions of notions propeinfimum and

propesupremum from Definition 5 into fuzzy setting.

Definition 10 ([1]). Let Φ ∈ LX , then the propeinfimum of Φ
is the L-set

p inf(Φ) := L(Φ) ∩ U(L(Φ)); (21)

the propesupremum of Φ is the L-set

p sup(Φ) := U(Φ) ∩ L(U(Φ)). (22)

The following two definitions, which generalize Definitions

6 and 7, play a fundamental role in our results. The first of

them copies almost verbatim the definitions of the so called

completely lattice L-ordered sets [4], [7], [8].

Definition 11 ([1]). An L-propeordered set X = 〈〈X,≈〉,
�〉 is called an L-complete propelattice if p inf(Φ) and

p sup(Φ) are normal L-sets, i.e., Ker(p inf(Φ)) �= ∅ and

Ker(p sup(Φ)) �= ∅, for every L-set Φ ∈ LX .

Also here we denote ⊥ := p inf(X) and � := p sup(X),
even if these “elements” are now in fact of course L-sets. The

last definition in this section extends standardly into fuzzy

setting the first part of Definition 7.

Definition 12 ([1]). Let X = 〈〈X,≈〉, �〉 be an

L-propeordered set. A map f : X → X is L-fuzzy isotone
on X if the following condition holds:

∀x, y ∈ X : (x� y) ≤ (f(x)� f(y)). (23)

The following auxiliary statement summarizes some simple

properties of introduced notions and some necessary facts for

a proof of Theorem 3 in the next section. General facts from

these clearly have to hold also for “fuzzy” lattices, no matter

how they are defined.

Lemma 2 ([1]). Let X = 〈〈X,≈〉, �〉 be an L-propeordered
set. Then the following statements hold:
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1) Let x0 ∈ X and let ψ ⊆ C∨
x0

be an arbitrary L-subset.
Then p inf(ψ) ⊆ C∨

x0
. Analogously if φ ⊆ C∧

x0
, then

p sup(φ) ⊆ C∧
x0
.

2) Let ∅ �= A ⊆ X be a crisp subset. Then

L(A) =
⋂
x∈A

C∧
x , U(A) =

⋂
x∈A

C∨
x ;

if ψ ∈ LX is an arbitrary L-set, then the next
implications hold:

ψ ⊆ U(A) ⇒ p inf(ψ) ⊆ U(A),
ψ ⊆ L(A) ⇒ p sup(ψ) ⊆ L(A).

3) Relations ⊥ = p inf(X) = L(X) and � = p sup(X) =
U(X) hold.

4) For arbitrary x0 ∈ X we have � ⊆ C∨
x0

and ⊥ ⊆ C∧
x0

.
5) The following holds:

p inf(∅) = � and p sup(∅) = ⊥. (24)

6) If X = 〈〈X,≈〉, �〉 is even an L-complete propelattice
and Θ,Ξ ∈ LX , then
(a) there exist x0, x1 so that

p sup(Θ) = S[x0] and p inf(Θ) = S[x1]; (25)

(b) if Θ ⊆ Ξ, S[x0] = p inf(Ξ), S[x1] = p inf(Θ),
S[x2] = p sup(Θ) and S[x3] = p sup(Ξ), then the
following relations hold:

x0
1�x1 and x2

1�x3. (26)

Let us mention that equalities (24) express generally

subnormal L-sets, even if their formal form is the same

as in the crisp case. But in the case, where X is an

L-complete propelattice, these L-sets are according to (25)

normal: SC-singletons.

V. MAIN RESULTS FOR FUZZY SETTING

Statements without proofs are proved in [1]. Let us mention

that all our proofs have a common core. Always we have

a construction of the least L-set of specific properties in the

complete lattice 〈LX ,∩,∪, ∅, X〉 = 〈LX ,⊆〉 – in the same

way as in the proof of the following Theorem 3, see further

relations (28) and (30).

A relatively isotone map [3] is a generalization of isotone

maps on posets. Its analogy can be introduced also for

L-propeordered sets. The following definition generalizes the

second part of Definition 7.

Definition 13. Let X = 〈〈X,≈〉, �〉 be an L-propeordered

set. A map f : X → X is L-fuzzy relatively isotone on X, if

for every x, y ∈ X the following condition holds:

(f(x)� y) ∧ (x� y) ∧ (x� f(y)) ≤ (f(x)� f(y)). (27)

Clearly the next implication holds:

(x� y) ≤ (f(x)� f(y)) ⇒
⇒ (f(x)� y) ∧ (x� y) ∧ (x� f(y)) ≤ (f(x)� f(y)).

Relation (23) implies (27) and hence every L-fuzzy isotone

map is at the same time L-fuzzy relatively isotone, but again

the opposite does not generally hold.

Remark 1. Obviously, it makes a not very substantial sense

to substitute the expression (f(x)� y)⊗(x� y)⊗(x� f(y))
for the left side of inequality (27), because according to (5)

if two of its terms are equal to some (fixed) neutral N (L) ∈
N(L), then the third term has no influence on the value of the

expression, no matter what is its value like. One can observe

that in the case of such a formulation of (27) Theorem 3 would

not hold.

The following theorem is partially proved in [1]. It gives

a positive answer onto the first part of the question in the

introduction, i.e., that (1) holds. Its proof presents quite general

idea from the theory of ordinal numbers, which universally

pervades proofs of all the theorems in [1].

Theorem 3. (i) Let X = 〈〈X,≈〉, �〉 be an L-complete
propelattice and f : X → X be L-fuzzy relatively isotone
map on X. Then Fix(f) �= ∅.

(ii) Moreover, if f : X → X is L-fuzzy isotone on X, then the
set Fix(f) contains the propeleast and the propegreatest
element with respect to the propeorder 1� ⊆ X × X ,
i.e., pmin(Fix(f)) and pmax(Fix(f)) exist.

Proof: (i) Let us show that x0 ∈ Fix(f) exists, i.e., that

Fix(f) �= ∅, if f : X → X is L-fuzzy relatively isotone on X.

Let F = {Φλ ∈ LX |λ ∈ Λ} ⊆ LX be the indexed system

of all L-sets such that for every Φλ ∈ LX the following two

conditions hold:

(a) Φλ ⊆ Φλ ◦ f , i.e., Φλ(x) ≤ Φλ(f(x)) for every x ∈ X;

(b) the implication φ ⊆ Φλ ⇒ p sup(φ) ⊆ Φλ holds for

every φ ∈ LX .

The system F is nonempty since X ∈ F : clearly X(x) =
X(f(x)) = 1 for every x ∈ X . Also p sup(φ) ⊆ X for every

φ ∈ LX . Further let us define the L-set

Φ :=
⋂

F =
⋂
λ∈Λ

Φλ �= ∅. (28)

With respect to (b) for φ = ∅ we have according to (24)

p sup(∅) = ⊥ ⊆ Φλ for all λ ∈ Λ. Hence according to (25)

∅ �= S[x0] = ⊥ ⊆ Φ for some x0 ∈ X , after which Φ �= ∅.

First let us show that the L-set Φ meets with both the

conditions (a) and (b), i.e., that Φ is the least element of F
with respect to the order in the complete lattice 〈LX ,⊆〉 =
〈LX ,∩,∪, ∅, X〉. For arbitrary λ ∈ Λ and x ∈ X we have

Φ(x) =

(⋂
λ∈Λ

Φλ

)
(x) =

∧
λ∈Λ

Φλ(x) ≤ Φλ(x) ≤ Φλ(f(x));

hence

Φ(x) ≤
∧
λ∈Λ

Φλ(f(x)) =

(⋂
λ∈Λ

Φλ

)
(f(x)) = Φ(f(x)),

(29)

so Φ ⊆ Φ ◦ f and the condition (a) holds for Φ.

The condition (b) can be shown in an even simpler way.

Let φ ⊆ Φ be an arbitrary L-subset. Then according to (28),
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φ ⊆ Φλ for every λ ∈ Λ and hence p sup(φ) ⊆ Φλ, that is

p sup(φ) ⊆ ⋂λ∈Λ Φλ = Φ. Hence the condition (b) holds for

Φ too. All in all, we have in 〈LX ,⊆〉 that

Φ = inf(F) = min(F) ∈ F . (30)

As Φ ⊆ Φ ∈ F , we have according to (b) p sup(Φ) ⊆ Φ.

According to Lemma 2 (6) (a), relation (25), there exists x0 ∈
X such that p sup(Φ) = S[x0]. Then Φ(x0) = 1 and therefore

according to (a) also Φ(f(x0)) = 1. Furthermore, with respect

to (22)

S[x0] = p sup(Φ) = U(Φ) ∩ L(U(Φ)). (31)

Herefrom

U(Φ)(x0) =
∧
x∈X

(Φ(x) → (x�x0)) = 1,

i.e., Φ(x) → (x�x0) = 1 for every x ∈ X . In

every residuated lattice L for every a, b ∈ L the following

equivalence holds: a → b = 1 ⇔ a ≤ b. From here we have

this important inequality:

Φ(x) ≤ (x�x0), ∀x ∈ X. (32)

Especially, for the choice x = f(x0) in (32) we have

1 = Φ(f(x0)) ≤ (f(x0)�x0) ⇒ (f(x0)�x0) = 1. (33)

According to (16) and (6), it is now sufficient to prove that

(x0 � f(x0)) = 1. Let us define the L-set Φ∧ ∈ LX in the

following way:

Φ∧ := Φ ∩ C∧
f(x0)

. (34)

We show that Φ∧ = Φ. Obviously Φ∧ ⊆ Φ. The reverse

inclusion Φ∧ ⊇ Φ has to be shown. If we show that Φ∧

satisfies both the conditions (a) and (b), then this inclusion

has to hold with respect to (30), i.e., to minimality of Φ in F .

According to (34) with respect to (29) for every x ∈ X we

have:

Φ∧(x) = (Φ ∩ C∧
f(x0)

)(x) = Φ(x) ∧ C∧
f(x0)

(x) ≤
≤ Φ(x) ≤ Φ(f(x)). (35)

Further, with respect to (34), (29) and (32) we have

Φ∧(x) ≤ Φ(x) ≤ Φ(f(x)) ≤ (f(x)�x0) (36)

and

Φ∧(x) ≤ Φ(x) ≤ (x�x0). (37)

According to (34) and (20) we finally have:

Φ∧(x) ≤ C∧
f(x0)

(x) = (x� f(x0)). (38)

Because f : X → X is L-fuzzy relatively isotone on X,

according to (27) then with respect to (36), (37) and (38) we

obtain:

Φ∧(x) ≤ (f(x)�x0) ∧ (x�x0) ∧ (x� f(x0)) ≤
≤ (f(x)� f(x0)) = C∧

f(x0)
(f(x)). (39)

Relations (35) and (39) imply that for every x ∈ X
according to (34)

Φ∧(x) = Φ(x) ∧ C∧
f(x0)

(x) ≤ Φ(f(x)) ∧ C∧
f(x0)

(f(x)) =

= (Φ ∩ C∧
f(x0)

)(f(x)) = Φ∧(f(x)),

that is Φ∧ ⊆ Φ∧ ◦ f , i.e., Φ∧ satisfies the condition (a).

Finally let us prove for Φ∧ also the condition (b). Let φ ∈
LX be an arbitrary L-set such that φ ⊆ Φ∧. Since φ ⊆ Φ∧ =
Φ ∩ C∧

f(x0)
⊆ Φ, then according to the condition (b) we have

for Φ:

p sup(φ) ⊆ Φ. (40)

Because also φ ⊆ C∧
f(x0)

, then with respect to Lemma 2 (1)

we have:

p sup(φ) ⊆ C∧
f(x0)

. (41)

From (40) and (41) we finally obtain:

p sup(φ) ⊆ Φ ∩ C∧
f(x0)

= Φ∧. (42)

Hence according to (42) the L-set Φ∧ ∈ LX satisfies also

the condition (b). With respect to minimality of Φ in F the

inclusion Φ∧ ⊇ Φ then has to hold and hence the next equality

is valid:

Φ∧ = Φ. (43)

With respect to (31), (43) and (34) we have

S[x0] = p sup(Φ) = p sup(Φ∧) ⊆ Φ∧ = Φ∩C∧
f(x0)

⊆ C∧
f(x0)

,

hence

1 = S[x0](x0) ≤ C∧
f(x0)

(x0) = (x0 � f(x0)) ⇒
⇒ (x0 � f(x0)) = 1. (44)

From (16), (6), (33) and (44) we finally obtain

1 = (f(x0)�x0)⊗(x0 � f(x0)) ≤ (f(x0) ≈ x0) = 1 ⇒
⇒ f(x0) = x0,

that is x0 ∈ Fix(f), i.e., Fix(f) �= ∅. The first part of the

proof is finished.

(ii) Now let f : X → X be L-fuzzy isotone on X and let

x0 ∈ Fix(f) be the same as in the part (i). We prove that

x0 = pmin(Fix(f)) = p inf(Fix(f)) in the propeordered set

〈〈Fix(f),=〉, 1� ∩ (Fix(f)×Fix(f))〉. Suppose (even if it is

not absolutely necessary) that |Fix(f)| ≥ 2 and x∗ ∈ Fix(f)
be such fixed point of f that x∗ �= x0. We have to show that

(x0 �x∗) = 1, that is x0
1� x∗. For x∗ we have f(x∗) = x∗

and because f : X → X is L-fuzzy isotone on X, for every

x ∈ X according to (20) and (23) we have

C∧
x∗(x) = (x�x∗) ≤ (f(x)� f(x∗)) =

= (f(x)�x∗) = C∧
x∗(f(x)),

hence C∧
x∗ ⊆ C∧

x∗ ◦ f and C∧
x∗ satisfies the condition (a). The

condition (b) is fulfilled according to Lemma 2 (1). Now by an

analogous argumentation as above we have that Φ = Φ∩C∧
x∗ .

Herefrom, according to (31)

S[x0] = p sup(Φ) = p sup(Φ ∩ C∧
x∗) ⊆ Φ ∩ C∧

x∗ ⊆ C∧
x∗ .

Finally, this implies that

1 = S[x0](x0) ≤ C∧
x∗(x0) = (x0 �x∗) ⇒ (x0 �x∗) = 1,

hence x0
1�x∗. Because x0 ∈ Fix(f), according to

Definition 4 with respect to the propeorder 1� ⊆ X × X
then x0 = pminFix(f). This proves the second part.
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An argumentation, which leads to the proof of the fact that

Fix(f) �= ∅ and of the potential existence of the propegreatest

element of Fix(f) with respect to 1� ⊆ X × X , is dual.

Here we introduce the system of all L-sets P = {Ψλ ∈ LX |
λ ∈ Λ} ⊆ LX such that they satisfy the next two conditions:

(aa) Ψλ ⊆ Ψλ ◦ f , i.e., Ψλ(x) ≤ Ψλ(f(x)) for every x ∈ X;

(bb) the implication ψ ⊆ Ψλ ⇒ p inf(ψ) ⊆ Ψλ holds for

every ψ ∈ LX .

Further, we introduce the L-set ∅ �= Ψ :=
⋂P =⋂

λ∈Λ Ψλ ∈ LX . If f : X → X is L-fuzzy relatively isotone

on X and S[x1] = p inf(Ψ), then we can symmetrically show

that x1 ∈ Fix(f), and if it is L-fuzzy isotone, then also

x1 = pmax(Fix(f)).

Let us notice that for an (L-fuzzy) relatively isotone map its

pmin(Fix(f)) nor pmax(Fix(f)) does not need to exist and

hence Fix(f) does not need to have a structure of a complete

propelattice. Obviously, if L = 2 is the Boolean algebra with

the support {0,1}, then the first part of Theorem 2 follows

directly from Theorem 3(i).

Remark 2. The proof of Theorem 3 shows that while

in X = 〈〈X,≈〉, �〉 transitivity is eliminable, for L =
〈L,∧,∨,0,1〉 = 〈L,≤〉 transitivity remains fundamental, see

for example relations (29), (35), (36), (37), (39) and others.

Transitivity of L is irreplaceable also for validity of Lemma 2

and all the other statements. The question of transitivity for

L = 2 (as for example in Theorem 2) is pointless, but it is

important to emphasize that the Boolean algebra 2 is transitive

trivially.

The last result of this section gives a positive answer to the

second part of the question given in the introduction: Even

for L-complete propelattices an analogy of the fact (2) keeps

holding. Nevertheless, let us point out that the theorem holds

only for L-fuzzy isotone maps, for L-fuzzy relatively isotone

maps no similar statement holds. Of course, this theorem

immediately implies the second part of Theorem 2 for the

case L = 2.

Theorem 4 ([1]). Let X = 〈〈X,≈〉, �〉 be an L-complete
propelattice and f : X → X be L-fuzzy isotone on X. Then
for an arbitrary subset P ⊆ Fix(f) there exist its p inf(P )
and p sup(P ) in Fix(f) with respect to the propeorder 1� ∩
(Fix(f)× Fix(f)), i.e.,

Ff = 〈〈Fix(f),=〉, 1� ∩ (Fix(f)× Fix(f))〉
is a complete propelattice.

In connection to Theorem 4 it is important to realize that

for an L-fuzzy isotone map f : X → X the set of fixed

points Fix(f) creates a crisp complete propelattice. This fact

obviously relates (but loosely) to similar results in [7] and this

is also the reason why we could not omit the third part of the

paper.

VI. CONCLUDING REMARKS

It is obvious that our results have to be fully compatible

with Theorem 1 for logical setting represented by L = 2.

Theorem 2 shows that (1) and (2) hold in this case for complete

propelattices. Moreover, if the L-relation � ∈ LX×X is

transitive, also (3) and (4) must hold. But there exist some

counterexamples that weak transitivity in the form

(x� y)⊗ (y� z) ≤ (x� z), ∀x, y, z ∈ X, (45)

is not sufficient for equalities (3) and (4). Nevertheless, the

following theorem holds.

Theorem 5 ([1]). Let X = 〈〈X,≈〉, �〉 be an L-complete
propelattice, f : X → X be an L-isotone map on X and
L-sets Ω, Φ ∈ LX be defined for an arbitrary x ∈ X as
follows:

Ω(x) := (f(x)�x) and Φ(x) := (x� f(x)). (46)

Let an L-relation � ∈ LX×X be strongly transitive, i.e., for
every x, y, z ∈ X:

(x� y) ∧ (y� z) ≤ (x� z). (47)

If S[x0] = inf(Ω), S[x1] = sup(Φ), then

x0 = min(Fix(f)) and x1 = max(Fix(f)). (48)

For the case L = 2, relations (45) and (47) are equivalent

and relations (48) clearly transfer into (3) and (4). Theorem 2

together with this fact hence give the complete version of

Theorem 1 – Quomodo videmus circulum plane inclusum iri!

(prof. Petr Vopěnka3).

Remark 3. (a) Let us point out, that the statement of

Theorem 5 does not hold for L-fuzzy relatively isotone maps,

even if the L-propeorder � ∈ LX×X is strongly transitive.

Simple counterexamples exist even in the crisp case [3].

(b) In every residuated lattice L for all a, b ∈ L obviously

a ⊗ b ≤ a ∧ b holds. Hence every strongly transitive relation

is weakly transitive too.

The situation from Theorem 3 (and partially from Theorem

5) is demonstrated in the following example.

Example 3. Let L = 〈L,∧,∨,⊗,→,0,1〉 be such that

L = {0, N,1}, where 0 < N < 1 and N is the only neutral

of L, i.e., N ∈ {N (L)} = N(L). The operations ⊗,→
have all the required properties. Obviously, L is a complete

residuated lattice. In place of the L-equality we use the

L-equality ≈N ∈ LX×X which is defined in the following

way: (w ≈N w) = 1, (w ≈N z) = N for w �= z, where

w, z ∈ X .

Let X = {⊥, x, y,�}. The diagram in Fig. 3

indicates a “skeleton” of the L-complete propelattice X =
〈〈X,≈N 〉,�〉 (hardly we can talk about a “Hasse diagram”

and only hardly the whole L-relation � ∈ LX×X can be

simply displayed).

The L-propeorder � ∈ LX×X is given in this way:

(w��) = 1, (⊥�w) = 1, (w�w) = 1, (��w) = N ,

(w�⊥) = N for w ∈ X and (x� y) = N = (y�x).
The L-equality ≈N obviously fulfills with respect to (5) all

the conditions of Definition 2. And also � is antisymmetric

3The famous founder of the alternative set theory and alternative
mathematics in general.
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Fig. 3 Diagram for Example 3

w.r.t. ≈N , i.e., (16) in Definition 8 holds. The propeorder �
is obviously strongly transitive (compare to the text preceding

Example 1, because here |X| = 4) and hence also weakly

transitive. For example, for ⊥, x ∈ X we have:

(⊥�x) ∧ (x� y) = 1 ∧N = N ≤ 1 = (⊥� y),

(x� y) ∧ (y�⊥) = N ∧N = N ≤ N = (x�⊥).

It is easy to verify that X is an L-complete propelattice. For

example the following holds:

A = {1/x, 1/y} ⇒ p inf(A) = S[⊥],

A = {N/x,
1/y} ⇒ p inf(A) = S[y],

A = {1/x, 1/y} ⇒ p sup(A) = S[�],

A = {1/x, N/y} ⇒ p sup(A) = S[x],
A = {N/x,

N/y} ⇒ p inf(A) = S[�],

p inf(X) = S[⊥] and p sup(∅) = S[⊥].

Finally let us define the map f : X → X as follows:

f(⊥) = ⊥, f(x) = y, f(y) = ⊥, f(�) = ⊥. One can easily

verify that f is L-fuzzy relatively isotone; for example for

x,� ∈ X we have:

(f(x)��) ∧ (x��) ∧ (x� f(�)) =

= (y��) ∧ (x��) ∧ (x�⊥) =

= 1 ∧ 1 ∧N = N ≤ (f(x)�f(�)) = (y�⊥) = N. (49)

The other cases can be verified in an even simpler way.

Inequality (49) also shows that even if the map f is L-fuzzy

relatively isotone, it is not L-fuzzy isotone. However, at the

same time Fix(f) = {⊥} �= ∅.
We briefly show in which sense an analogy of relations

(14) holds. With respect to reflexivity (15) of the relation

� ∈ LX×X the following inclusions hold for L-sets (46):

Fix(f) ⊆ Ω and Fix(f) ⊆ Φ. Let S[x2] = p inf(Ω) and

S[x3] = p sup(Φ), then according to Lemma 2(6)(b), relation

(26), the following relations hold:

pmax(Fix)f)) 1�x3 and x2
1� pmin(Fix(f)). (50)

These in fuzzy setting correspond to the first two relations in

(14), which directly correspond to relations (3) and (4); other

analogies of relations (14) would be similar. And all three

parts of the question from the introduction are fully answered.

In the end we show, where lies the problem of the

fuzzification of Tarski’s theorem in connection with transitivity

and validity of relations (3) and (4). In relation (47) there

occurs the operation meet ∧ : L × L → L. The fact, that

this operation is idempotent, i.e., a ∧ a = a for every a ∈ L
(and it is known that this is the only operation of appropriate

requirements with this property), is fundamental in the proof

of Theorem 5. Contrarily, the operation multiplication ⊗ :
L × L → L, which occurs in (45), is not idempotent (except

for the trivial case L = 2, where ⊗ = ∧). Generally only

the inequality a ⊗ a ≤ a holds for every a ∈ L. This

“trouble” cannot be in principal overcome, as the existing

counterexamples show.
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