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 
Abstract—The ionization yield of ion tracks in polymers and bio-

molecular systems reaches a maximum, known as the Bragg peak, 
close to the end of the ion trajectories. Along the path of the ions 
through the materials, many electrons are generated, which produce a 
cascade of further ionizations and, consequently, a shower of 
secondary electrons. Among these, very low energy secondary 
electrons can produce damage in the biomolecules by dissociative 
electron attachment. This work deals with the calculation of the 
energy distribution of electrons produced by protons in a sample of 
polymethylmethacrylate (PMMA), a material that is used as a 
phantom for living tissues in hadron therapy. PMMA is also of 
relevance for microelectronics in CMOS technologies and as a 
photoresist mask in electron beam lithography. We present a Monte 
Carlo code that, starting from a realistic description of the energy 
distribution of the electrons ejected by protons moving through 
PMMA, simulates the entire cascade of generated secondary 
electrons. By following in detail the motion of all these electrons, we 
find the radial distribution of the energy that they deposit in PMMA 
for several initial proton energies characteristic of the Bragg peak. 

 
Keywords—Monte Carlo method, secondary electrons, energetic 

ions, ion-beam cancer therapy, ionization cross section, 
polymethylmethacrylate, proton beams, secondary electrons, radial 
energy distribution. 

I. INTRODUCTION 

NTERACTION of energetic ions with matter is present in 
many aspects of our daily lives. Cosmic radiation contains 

an enormous amount of projectiles [1], with 99% being atomic 
nuclei and about 1% being electrons. 90% of the atomic nuclei 
are hydrogen nuclei (protons), 9% alpha particles, and 1% 
nuclei of heavier elements. They produce showers of 
secondary particles that penetrate the atmosphere and can 
reach the surface of the Earth. Many of these particles can also 
reach delicate microelectronic devices present in spacecrafts, 
as well as their human crew [2]. Besides these potential 
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hazards, energetic projectiles conveniently used can be 
employed to characterize and modify the properties of 
materials. Also, energetic ion beams represent a useful tool in 
radiotherapy [3]-[8]; in particular, ion-beam cancer therapy is 
based on the characteristic pattern of the energy deposited by 
ion beams in condensed targets. The depth-dose profile 
presents a sharp and narrow maximum, called Bragg peak, 
located at the end of the particle trajectory, close to the ions 
maximum range. This particular feature of the energy 
deposition pattern of ion beams is exploited to maximize the 
damage in the tumoral regions minimizing the effects of the 
irradiation on the healthy tissues near to the diseased cells [9].  

From the point of view of modeling, the interaction of 
charged particles with condensed matter represents an intricate 
multi-scale problem. In particular, hadron therapy concerns 
biological materials, where the relevant bio-physical processes 
are very complex, as they involve reactions of nuclear 
fragmentation, secondary electron emission, damages to the 
cells, and repair mechanisms of macromolecules (e.g. DNA, 
proteins, etc.), among other processes [10]. 

It is known that a relevant part of the biological damage is 
due to the secondary electrons. In particular, the secondary 
electrons of very small energy play an important role in 
determining the damage, which they infringe by the 
dissociative electron attachment in the nascent stages of DNA 
radiolysis within cells [11], [12].  

This work deals with the Monte Carlo calculation of the 
emission of secondary electrons [13] due to the energy 
delivered in the target by the swift proton beams. In particular, 
starting from a realistic description of the energy distribution 
of the electrons generated by protons moving through PMMA, 
which is used as a phantom of living tissues [14], we calculate 
the radial distribution of the energy deposited by the avalanche 
of secondary electrons, at energies typical around the Bragg 
peak. We assume that the secondary electron energy is 
deposited at depths where electrons interact with phonons or 
are trapped in the solid due to the polaronic effect. The 
determination of such radial energy deposition profiles is very 
relevant, for their influence in the response of the material to 
radiation, either for evaluating the biological effect in the case 
of radiotherapy, or the amount of damage, as well as its space 
resolution, in lithographic techniques. 

The paper is structured as follows. In Section II, the 
theoretical methods used for this study are presented, 
including the formalism for calculating the energy spectrum of 
the ejected secondary electrons (Section II.A) and the Monte 
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Carlo code for following the cascade of electrons (Section 
II.B). The results are presented and discussed in Section III, 
while the final conclusions are given in Section IV. 

II. THEORETICAL FRAMEWORK 

A. Electron Production by Primary Protons 

The first step for the buildup of the radial energy deposition 
profile is the generation of secondary electrons by the primary 
energetic ion. An appropriate follow-up of the motion of the 
swift protons through the target can be accounted for in detail 
by means of the simulation code SEICS (Simulation of 
Energetic Ions and Clusters through Solids), which has been 
described elsewhere [15], [16], but whose main characteristics 
are summarized below. 

By combining molecular dynamics and Monte Carlo 
techniques, the SEICS code incorporates the electronic 
energy-loss of the projectile (including stochastic 
fluctuations), multiple Coulomb scattering and elastic energy-
loss, electron charge-exchange processes, as well as the 
nuclear fragmentation reactions induced by the incoming 
protons. The latter have been recently implemented [17] using 
the nuclear cross section data from the ICRU Report 63 [18] 
and a local energy deposition model. In this code, the 
electronic interactions are accounted for through realistic 
stopping cross sections calculated within the dielectric 
formalism and the MELF-GOS (Mermin Energy Loss 
Function - Generalized Oscillators Strengths) method [19]-
[21], which provides a suitable description of the target 
electronic excitation spectrum from a physically motivated 
fitting to the available experimental optical data of the 
material, and its extension to arbitrary values of the 
momentum transfer.  

The energy distribution of the electrons generated by each 
proton are obtained from the corresponding cross sections 
evaluated according to a semi-empirical model recently 
developed for biological targets and based on the dielectric 
formalism [22] that we summarize below. Let us consider a 
proton with kinetic energy ܶ, moving through a condensed 
target characterized by its dielectric function ߝሺ݇, ߱ሻ, where 
԰݇ and ԰߱ are the momentum and energy transferred in an 
inelastic collision. The energy of the secondary electrons 
generated by the incoming proton is obtained assuming that 
the weakly-bound electrons of the target are characterized by a 
mean binding energy ܤത , such that, if an inelastic event occurs 
with 	԰߱ ൐ തܤ , it implies that a secondary electron will be 
ejected with a kinetic energy 	ܹ ൌ ԰߱ െ തܤ . For the atom-like 
inner-shell electrons, characterized by their ionization energy 
 ୧୭୬୧୸,௝, the secondary electrons will be emitted with a kineticܤ
energy ܹ ൌ ԰߱ െ  ୧୭୬୧୸,௝. The energy spectrum of theܤ
generated electrons by proton impact with energy ܶ is 
obtained by the ionization single differential cross section 

(SDCS) 
ୢ஢౟౥౤౟౰ሺ்,ௐሻ

ୢௐ
, given by [22]: 
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where ݁ is the fundamental charge, ܯ is the proton mass, and 
ܰ is the atomic density of the target. The integration limits are 
imposed by momentum conservation laws and they are given 
by ݇ଶ,ଵ ൌ ܶ√൫	ܯ2√ 	േ	√ܶ െ ԰߱൯. The first sum in the 
integrand refers to the outer shell electron excitations and the 
second one to the inner shell electron excitations. They both 

contribute to the energy loss function (ELF), Im ቀ
ିଵ

ఌ
ቁ, of the 

target. 
Due to the interaction with the target atoms (electrons and 

nuclei), the proton energy degrades as it moves along the 
target. Therefore, the proton beam has an energy distribution 
that broadens as it reaches deeper regions in the target. As the 
ionization cross sections are function of the projectile energy, 
the energy spectra of the electrons generated along the proton 
track should be obtained by convoluting the energy 
distribution of the primary proton beam at each depth with the 
differential ionization cross section with respect to the electron 
ejection energy.  

It is worth to notice that for the beams with the initial 
energies commonly used in hadron therapy (several hundred 
of MeV), primary protons around the Bragg peak have 
energies of a few MeV, and most of the initially generated 
electrons have low energies (several tens of eV) [17]. 

B. Secondary Electron Propagation Simulation 

The propagation of the generated electrons by proton 
impact was simulated by using an appropriate Monte Carlo 
code, that takes both elastic and inelastic interactions into 
account. The treatment of the elastic collisions is based on the 
differential and total elastic scattering cross sections calculated 
utilizing Mott theory [23], i.e. numerically solving the Dirac 
equation in a central field; this procedure is known as the 
“relativistic partial wave expansion method” and it has been 
demonstrated to provide excellent results when compared to 
experimental data [24]-[29].  

Concerning the energy losses, the inelastic mean free path 
was calculated by taking into account the inelastic interactions 
of the incident electrons with atomic electrons, with phonons, 
and with polarons.  

The calculation of the electron-electron inelastic scattering 
processes was performed within the dielectric formalism and 
the Mermin theory [30]. Electron-phonon interactions were 
described using the Fröhlich theory [31], [32]. The polaronic 
effect was modeled according to the law proposed by 
Ganachaud and Mokrani [33], which parameters where 
determined by the best comparison of the Monte Carlo code 
results to a set of experimental data.  

Electron trajectories follow a stochastic process, with 
scattering events separated by straight paths having a 
distribution of lengths that follows a Poisson-type law. Once 
the step length is generated, the elastic or inelastic nature of 
the next scattering event, the polar and azimuthal angles, and 
the energy losses, are all sampled by using the relevant 
cumulative probabilities according to the usual Monte Carlo 
recipes [34], [35]. Details of the present Monte Carlo 
calculations can be found in [36]. 
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Fig. 3 Monte Carlo simulation of the radial energy deposited by 
secondary electrons produced by a 1 MeV and 5 MeV proton beam 
impinging on PMMA, as a function of the radial distance r from the 

ion impact. The energy is deposited in spherical shells of inner radius 
r and outer radius r +d r 

 
In Fig. 3, we present the Monte Carlo calculation of the 

secondary electron radial energy distribution for PMMA 
irradiated by a 1.0 MeV and 5.0 MeV proton beams.  

The calculated distribution was obtained assuming that the 
primary electrons emerge from the proton track according to 
the ionization cross section corresponding to the electron 
energy distributions reported in the previous subsection. Their 
cumulative probabilities were used to calculate the initial 
energy of each primary electron. The radial distribution for 1 
MeV protons was normalized to one initial electron. The 
radial distribution corresponding for 5 MeV protons were 
scaled according to the number of secondary electrons ejected 
at each energy. The scaling factor for 1 MeV protons is 3.72 
times larger than it is for 5 MeV protons. 

The results shown in Fig. 3 allow establishing the shape of 
the energy distribution of the secondary electrons in PMMA 
and the mean distance from the proton track reached by the 
energy deposited. Such a distance defines the target area likely 
to be damaged by the secondary electrons. The radial 
distribution of deposited energy has a maximum around 10-12 
Å from the ion track and then decays exponentially.  

IV. CONCLUSION 

Starting from a realistic description of the energy 
distribution of the electrons ejected by protons moving 
through PMMA obtained by the dielectric formalism and the 
MELF-GOS method, a quantitative Monte Carlo technique 
was used to calculate the electron-energy deposition (due to 
the entire cascade of the generated electrons) around the ion 
track. The energy was assumed to be deposited where 
electrons interact with phonons or are trapped in the solid due 
to polaronic effect. Proceeding in this manner, we found the 
radial distribution of the energy that all the secondary 
electrons deposit in the polymer PMMA along the proton 
track. This is one of the main features affecting the response 

of the material under irradiation. 
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