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 
Abstract—In the present work, we revisit the collapse process of 

a spherically symmetric homogeneous scalar field (in FRW 
background) minimally coupled to gravity, when the phase-space 
deformations are taken into account. Such a deformation is 
mathematically introduced as a particular type of noncommutativity 
between the canonical momenta of the scale factor and of the scalar 
field. In the absence of such deformation, the collapse culminates in a 
spacetime singularity. However, when the phase-space is deformed, 
we find that the singularity is removed by a non-singular bounce, 
beyond which the collapsing cloud re-expands to infinity. More 
precisely, for negative values of the deformation parameter, we 
identify the appearance of a negative pressure, which decelerates the 
collapse to finally avoid the singularity formation. While in the un-
deformed case, the horizon curve monotonically decreases to finally 
cover the singularity, in the deformed case the horizon has a 
minimum value that this value depends on deformation parameter 
and initial configuration of the collapse. Such a setting predicts a 
threshold mass for black hole formation in stellar collapse and 
manifests the role of non-commutative geometry in physics and 
especially in stellar collapse and supernova explosion. 

 
Keywords—Gravitational collapse, non-commutative geometry, 

spacetime singularity, black hole physics. 

I. INTRODUCTION 

NE of the most important questions in a gravitational 
theory, such as General Relativity (GR), and relativistic 

astrophysics is the gravitational collapse of a massive star 
under its own gravity at the end of its life cycle. A process in 
which a sufficiently massive star undergoes a continual 
gravitational collapse on exhausting its thermonuclear fuel, 
without achieving an equilibrium state such as a white dwarf 
or a neutron star. It is a well-established result that a 
gravitational collapse process, governed by the Einstein field 
equations with physically reasonable matter configurations, 
may end in a spacetime singularity [1]; this is an event where 
physical parameters such as the matter energy density and 
spacetime curvatures will diverge. [1]. However, classical GR 
breaks down at the very late stages of a collapse scenario, 
where densities and curvatures are extreme so that alternative 
theories of gravity could provide a suitable framework to 
resolve the singularity. One such possible effect is non-
commutativity between spacetime coordinates, which was first 
proposed by Snyder [2] in an effort to introduce a short length 
cutoff (the non-commutativity parameter) in a Lorentz 
covariant way. The aim was to improve the renormalizability 
properties of relativistic quantum field theory. The basic idea 
that lies behind non-commutativity is to take into account the 
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uncertainty in simultaneous measurements of the phase space 
coordinates and their conjugate momenta. The main 
motivation of such an interest was triggered by the works that 
have made the connection between non-commutativity and 
string and M theories [3]. Since the advent of non-
commutative field theory, the interest in this area slowly but 
continuously made progress into the domain of gravity 
theories. Recent progresses in non-commutative geometry 
imply that, the non-commutative effects in GR may be taken 
into account by keeping the standard form of the Einstein 
tensor on the left-hand side of the field equations and 
introducing a modified energy-momentum tensor as a source 
including non-commutative parameter, on the right-hand side 
[4]. Since the past decades, much attention has been given into 
analyzing the collapse process of a spherical homogeneous 
scalar field, both numerically and analytically. The authors 
have dealt with the class of collapsing scalar field models with 
a non-zero potential, where the weak energy condition is 
satisfied by the collapse setting. It is seen that the endstate of 
the collapse at the classical level can be either a blackhole or a 
naked singularity, and that physically it is the rate of collapse 
that decides the final outcome of the collapse process [1]. In 
the herein model, we take the background spacetime as FRW 
model and investigate the effects of phase space deformation 
on the final fate of the collapse process of a homogeneous 
scalar field [5]. We introduce such a deformation as a 
noncommutativity between the canonical momenta of the 
scalar field and that of the scale factor. When the deformation 
effects are absent, the collapse scenario ends in a spacetime 
singularity, while in the presence such effects, the singularity 
is removed by a non-singular bounce. The phase space 
deformation effects show itself as a negative pressure that 
decelerates the collapse rate to finally prevent the singularity 
formation. Our objective is then to investigate the gravitational 

collapse of a minimally coupled scalar field  in the presence 

of a specific phase-space deformation. In particular, this 
modification will concern the dynamical sector involving the 

momenta of the scale factor a  and of . From a mathematical 

point of view, such a deformation introduces a deformed 
Poisson algebra, and hence makes the trajectory of the system 
within the phase-space to be different in comparison to the un-
deformed case.  

II.  GRAVITATIONAL COLLAPSE OF A HOMOGENEOUS SCALAR 

FIELD 

Let us begin with the Lagrangian density of a scalar field 
which is given by 
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where 2 8 G  , R  is the Ricci scalar, g is the determinant of 
a metric g  (where the Greek indices run from zero to three) 

and ( )V   is the scalar field potential. The interior spacetime 

of the collapsing cloud is parametrized as 
 

2 2 2 2 2 2( ) ( , ) ,ds dt a t dr R t r d                     (2) 
 
where ( , ) ( )R t r ra t  is the physical radius of the body, 

( )a t is the scale factor and 2d is the standard line element 

on a unit two-sphere. From the Lagrangian (1) we can find the 
corresponding Hamiltonian as 
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Let us now consider the ordinary phase-space structure 

described by the usual Poisson brackets, as 
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We then get the equations of motion for the Hamiltonian (3) 

as 
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whence we can easily get the equations governing the 
dynamics of the system as 
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and the evolution equation for the scalar field 
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where /H a a   is the rate of collapse. These equations admit 
a solution where the scale factor vanishes at a finite amount of 

time (we set 2 1   and   and   are negative constants). 
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and the energy density together with Kretschmann invariant 
diverge 
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Hence, we have a spacetime singularity. We subsequently 

show in the next section, by resorting to phase-space 
deformation effects, that the corresponding gravitational 
collapse procedure does not only culminate in the formation of 
a spacetime singularity but also exhibits a bouncing behavior. 

III. EFFECTS OF PHASE-SPACE DEFORMATION ON THE 

COLLAPSE DYNAMICS AND SINGULARITY REMOVAL 

In this section, inspired by the mentioned motivations in 
Reference [6] and also by the corrections from string theory to 
Einstein gravity [7], we propose to change the structure of the 
phase-space by introducing non-commutativity between 
conjugate momenta to trace the deformation implications in 
the gravitational collapse of a homogeneous scalar field. To 
retrieve a model with deformation (in the phase-space), where 
the calculations would allow interesting novel results, but that 
do not convey a mere trivial scenario, we should reasonably 
pick a convenient framework. Therefore, we choose to employ 
a dynamical deformation within the canonical conjugate 
momentum sector given as 

 

                3, ,aP P                           (10) 

 

where   is called as deformation parameter. The other 
Poisson brackets have been left unchanged. The modified 
equations of motion with respect to Hamiltonian (3) are then 
found as 
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Fig. 1 (a) and (b) Time behavior of the scale factor and the speed of 
collapse for different values of deformation parameter, 0.211   

(solid curve) and 0  (dotted-dashed curve), 3.2    and 1.1   

(c) The time behavior of a  (solid curve) and a (dashed curve) 
for 0.211  . We have taken the initial values 

 
whence after a few algebras, we get the evolution equations 
for the system as 
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together with the scalar field evolution equation as 
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We note that the above equations reduce to the 

commutative case once we set 0 . The 
dp  term is a 

pressure coming from non-commutative effects that play a 
crucial role in the collapse dynamics. We now investigate 
some aspects of the gravitational collapse, within the above 
framework for deformed phase-space, by means of numerical 
methods. We are particularly interested in probing the 
behavior of the scale factor, its time derivative, collapse 
acceleration, the scalar field evolution, and other related 
quantities for a potential of the same type as (8), in order to 
properly contrast the presence of non-commutative features in 
the collapse dynamics. Fig. 1 (a) presents numerically the time 
evolution of the scale factor for different values of the 
deformation parameter. The scale factor trajectories begin 

from the same initial value, ia  but, as the collapse proceeds, 

the full curve ( 0 ) separates from the other one and reaches 
a minimum value for the scale factor at a critical epoch which 

lies between ib cr fbt t t  . Thus, for ib crt t t  , the 

collapse scenario proceeds much slower than ibt t , ceasing 

at crt  and then entering a smooth expanding phase for 

cr fbt t t  . Therefore, it is seen that for 0  the collapse 

scenario presents a soft bouncing behavior during the time 

interval b fb ibt t t   . As the dot-dashed curve shows, the 

scale factor vanishes when the phase space deformation 

effects are absent i.e., 0 . In Fig. 2 (b) we have shown the 

behavior of the speed of collapse ( a ) where we see that for 

0  the collapse commences from ( ) 0ia t   proceeding for 

a while in an accelerating phase until an absolute maximum 
value in negative direction is reached (point A). It then 
decelerates and halts at point B where ( ) 0cra t  . After this 

epoch, the collapse regime is replaced by an accelerated 
expansion and continues up to the point C. This expanding 
phase slows down when this point is passed. Fig. 1 (c) further 
supports this argument: the acceleration of collapse remains 
negative prior to point A, where the collapse speed achieves 
its maximum negative value. 

 

( ) 1.98it  , ( ) 1.98it   and ( ) 3ia t   

 
This point corresponds to the first inflection point of 

acceleration curve, occurring at 1inft t . Thus, for 1inft t  

the collapse proceeds in the so-called fast-reacting process 

while for 1inf crt t t   a slow-reacting regime governs. The 

collapse experiences a decelerating phase from points A to B 

(see Fig. 1 (b) with a  achieving in between a local maximum. 
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As time evolves, the acceleration decreases to point B, with a  
progressing toward less negative values (upwards), eventually 

being 0a   and then smoothly becoming positive. This 

happens during the time interval bt within which the bounce 

appears. We note that bt  is too small so that a  changes 

infinitesimally and .a cte  For 
fbt t , an accelerating 

expanding phase governs the scenario until the time 2inft , at 

which a  reaches its second inflection point, where a  
achieves its absolute maximum (see also point C). For 

2inft t  the expanding phase slows down at late times. For 

the case 0 , the collapse velocity gets arbitrary large 
values at the singularity. In order to study the causal structure 
of spacetime during the dynamical evolution of the collapsing 
cloud, we need to investigate the time behavior of the apparent 
horizon which is the outermost boundary of trapped surfaces. 
The equation that governs the apparent horizon curve is given 
by [5] 

1

21 3
( ) .

( )a h
e ff

r t
a t 

 
  

  
                   (15) 

 
Fig. 2 shows the behavior of the apparent horizon curve 

where we see that when the phase space deformation effects 
are present the apparent horizon curve reaches a minimum 
value in the contracting phase; it then diverges at the bounce 
and converges to finite non-vanishing values at the expanding 
phase. The apparent horizon never gets zero values. Therefore, 
by choosing the boundary of the collapsing cloud suitably, the 
formation of the apparent horizon can be prevented. However, 

for 0 , the apparent horizon converges monotonically to 
zero to finally cover the singularity. In this case a black hole is 
formed. Finally, in Fig. 3, we have plotted the behavior of 
scale factor for different values of the deformation parameter. 

It is seen that the larger the absolute value of  the longer it 
takes for the bounce to occur. We therefore conclude that the 
effects of deformation within the phase-space could alter the 
final fate of the collapse scenario of a homogeneous scalar 
field so that the spacetime singularity is removed by a non-
singular bounce. Since the apparent horizon is not formed, the 
bounce could be observable and hence providing possible 
chance to detect the effects of non-commutative geometry. 

 
Fig. 1 The behavior of the apparent horizon for 0.211  (solid 

curve) and 0  (dotted-dashed curve), 3.2   and 1.1  . 

Lower panel: The time behavior of a  (solid curve) and a  (dashed 

curve) for 0.211  . We have taken the initial values 

( ) 1.98it  , ( ) 1.98it   and ( ) 3ia t   

 

 

Fig. 2 The time behavior of the scale factor for different values of 
deformation parameter, 0.07385   (solid curve), 

0.1266   (dotted curve), 0.19412   (dashed curve) and 

0.38402   (dotted-dashed curve) 
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