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Lyapunov-Based Tracking Control for Nonholonomic
Wheeled Mobile Robot

Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract—This paper presents a tracking control strategy based
on Lyapunov approach for nonholonomic wheeled mobile robot. This
control strategy consists of two levels. First, a kinematic controller is
developed to adjust the right and left wheel velocities. Using this
velocity control law, the stability of the tracking error is guaranteed
using Lyapunov approach. This kinematic controller cannot be
generated directly by the motors. To overcome this problem, the
second level of the controllers, dynamic control, is designed. This
dynamic control law is developed based on Lyapunov theory in order
to track the desired trajectories of the mobile robot. The stability of
the tracking error is proved using Lupunov and Barbalat approaches.
Simulation results on a nonholonomic wheeled mobile robot are
given to demonstrate the feasibility and effectiveness of the presented
approach.

Keywords—Mobile robot, trajectory tracking, Lyapunov,
stability.

[. INTRODUCTION

N recent years there has been enormous activity in the study

of a class of mechanical control systems called
nonholonomic mobile robot. In addition to their practical
applications, the theoretical challenges of both nonholonomic
characteristic and nonlinearity modeling have attracted the
attention of many researchers. However, the issues associated
with nonlinearity modeling are unable to be solved by
conventional linear control theory, and therefore other
possibilities have therefore been explored by various
researchers. Controlling such nonholonomic systems turns out
to be a nontrivial problem for many reasons. Even in the
simplest case, which we shall study here, the kinematic model
of a two-wheel mobile robot, the stabilization problem at a
given position requires a nontrivial controller [1]-[5].

Many efforts have been devoted to research the tracking
problems of wheeled mobile robots in recent years. A robust
fuzzy logic controller is presented in [6] for the trajectory
tracking of a mobile robot based on controlling the robot at a
higher level. The controller is highly robust, flexible, and can
automatically follow a sequence of discrete way points.
Moreover, no interpolation of the waypoints is needed to
generate a continuous reference trajectory. A robust sliding
mode tracking control for a nonholonomic mobile robot has
been presented in [7]. A feedback linearized by the computed-
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torque method for the dynamic equation of the robot is used
and the position is calculated by polar coordinates. Other
control schemes such as adaptive control and based on neural
networks are proposed in recent years [8]-[10]. Robust
trajectory tracking controllers for a two-wheeled mobile robot
was developed by [11] using its kinematic and dynamic model
in the presence of slip. The authors in [12] presented an
integrated motion planning and control framework for the
control of a wheeled mobile robot based on the differential
flatness property. A centralized feedback linearizing control
strategy is used in [13] with an extended Kalman Filter to
achieve a desired formation. Backstepping approach was used
in [14] for the dynamic model of a mobile robot.

Many control strategies based on Lyapunov approach have
been proposed for mobile robot. For unicycle-like vehicles,
[15] used Lyapunov approach to develop the control law. The
author proved that, with a special choice of the system state
variables, global stability properties can be guaranteed by
smooth feedback control law. Since that, researchers have
been working to improve Lyapunov based controller
performances in terms of convergence of tracking errors and
time response. For corridor navigation and wall following, the
authors in [16], proposed a Lyapunov based control law using
sonar and odometric sensorial information. In [17], Lyapunov
based controller is employed for mobile robot for tracking a
moving target with limited velocities.

This paper presents a tracking control strategy for the
mobile robots. This control strategy is divided into 2 levels to
achieve a smooth tracking movement while the robot moving
forward on a predefined trajectory. In the first step, a
kinematic controller is used to generate a velocity control law
in order to adjust the right and left wheel velocities. This
control law uses the desired and the real position/orientation of
the platform to generate a desired velocity that will be used as
input for the next level. Since this desired velocity cannot be
generated directly by the motors, control torques are designed
for the mobile platform based on the dynamic model. In the
second step, the dynamic controller is designed based on
Lyapunov approach to track the desired trajectory. Simulation
results show the effectiveness of the proposed control strategy
for controlling the mobile robot.

The rest of this paper is organized as follows. In Section II,
the system description is presented. Section III presents
kinematic and dynamic modeling of the mobile. The control
law for the mobile robot is presented in Section IV. The
simulation results are discussed in Section V, and the
conclusion is presented in Section VI.
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II. SYSTEM DESCRIPTION

The system used in this paper consists of two driving
wheels mounted on the same axis at the front while the two
back wheels can freely rotate as shown in Fig. 1. r is the radius
of each driving wheel, L is the distance between driving wheel
and the axes of symmetry, C. is the center of mass of the
mobile robot, €y — XY is the coordinate system fixed to the
mobile robot, C, is the origin of the coordinate system
Co — XY and is the center point between the right and left
driving wheels, and d is the distance from C, to C.. The
generalized coordinate q = [x,y, ®]7denotes the position and
orientation vector of the robot, and q4 = [x4 V4, 04]"
represents the desired trajectory.

'y
y qa = [xa, ya, Bal

Desired
trajectory

Fig. 1 Mobile robot

The objective is to develop a control law in order to track
the desired trajectory. Fig. 2 illustrates the block diagram of
the control strategy. There are two levels of the controller,
being kinematic and dynamic controller respectively. The
kinematic controller provides the desired velocity which will
be used by the dynamic controller in order to calculate the
suitable torque to be applied to the right and left motors of the
wheels.

Path kinematic Dvnamic 7 | Mobile
planner control " control —p| robOL
qq = [Xa, Ya, Oal

Sensor
mesurement

Fig. 2 Control design

[II. DYNAMIC AND KINEMATIC MODELING

The mobile manipulator considered in this paper consists of
a wheeled mobile robot shown in Fig. 1. The general dynamic
equation is described by [18] as:

M@+ C(q,9)q + G(q) = B(q)r — AT ()2 @)

where 7 = [7,,7;]T € R” is the input vector and consists of
motors’ torques T, and 7; which act on the right and left
wheels, A € R™ is the vector of constraint forces, M(q) € R™*"
is a symmetric and positive-definite inertia matrix, C(q,q) €
R™™ is the centripetal and Coriolis vector, G(q) € R™ is the
gravitational vector, B(q) € R™"; is the input transformation
matrix, and A(q) € R™ ™ is the matrix associated with the
constraints. We consider that the robot is moving on a flat
terrain and thus G(q) = 0. M, C, G, q in (1) can be expressed
as:

m 0
M(q) = 0 m
—2my,,dsin® 2m,,dcos® I
—2m,,@%dcos® 0
€(@9)q = |-2m,,¢?dsing |s G = [8]7
0

sin® 1 cos@  cos® x
AT = [—cos@ ;B(q) = -[sing Sin(D];q = [y]
—d L —L 9

m=m,+2my,; I =I.+2m,,(d? + %) + 21,

—2m,,dsin®
2m,,dcos®

where m, is the mass of the robot without the driving wheels,
m,, is the mass of each driving wheel plus the motor rotor, I,
is the moment of inertia of the platform without the driving
wheels and I,,, is the moment of inertia of each wheel and the
motor rotor about a wheel diameter; the kinematic constraints
can be denoted as:

Alp)g =0 2
xsin® — ycos@ = 0 3)

When selecting a full rank matrix S(g) to be a basis of null
space A(q), the constraint equation will be:

A@S(@) =0 “

where
[ﬂ (Lcos® + dsin®) 2L (Lcos® — dsm(z))]

r ) T )
S = ﬂ(Lsm(Z) — dcos®) 2L (Lsin® + dcos(?))j
r r
2L 2L

Therefore, we have:

X
b
0}
where w,; w; represent the angular velocities of the right and
left wheels and W = [w; ®,]T. If we consider v;w as the

linear and angular velocities of the mobile robot, the relation
between v; w and w,; w; can be explained as:

)
= 5@ [o] = S@W
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1 L
W _ /r /r v _ (6)
@)= 0 |- w =y
where V = [v  w]". From (5) and (6) it is clear that:
x cos®  dsin® |, 7N
V| =|sing —dcos(b] [w] =SV
1) 0 1
The derivative of (7) gives:
Gg=SV=§=8V+SV (8)

IV. CONTROL LAW DESIGN

In this section, the control torque based on dynamic model
is developed for nonholonomic wheeled mobile robot. First,
the velocity control based on kinematic model is designed to
develop the desired velocity. Next, the torques for mobile
platform are developed using such a desired velocity.

When multiplying (1) by ST, the constraint force term
AT (q) 2 can be eliminated using (4). So, we have:

STM§ + STCg = STBt )
Introducing (8), the dynamic equation (9) becomes:
MV +CV=t (10)

where M = STMS; C = STMS + S¢S and T = STBt
From the modified model, we consider the following
properties that will be used in the stability analysis:
P1. The inertia-mass matrices M(q) and M(q) are symmetric
positive definite.
P2. The inertia-mass matrix M(q) and the Coriolis matrix
C(q, ) satisfy the following skew-symmetric property:

XT(M-20)X=0 VX€ER" an

Note that the objective is to track a reference trajectory by
the mobile platform. Then, the desired position is g4 =
[xa Y4 ¢a] and the desired velocity is V; =[va wa].
Therefore, the tracking errors is obtained using the Kanayama
transformation [19] as:

x cos¢ sing 0][Xa—X (12)
= [—Sinqb cos¢p 0] [}’d - }’]
) 0 0 1ll¢a—9

Proposition 1: Using (2), (3) and (12), the error dynamics can
be given as:

%= wy — v+ vgcosd (13)
J = —w¥ + vgsing®
(5 =Wgqg — W

Proof: See Appendix.
Proposition 2: The error dynamics (13) are asymptotically
stable when using the following velocity control law:

_ V] _ [keZ + vgcosdp (14)
e = [w] - [ wg + kivdjf

where k; > 0; k,, > 0 are the controller gains.
To prove proposition 2, we consider the following positive
Lyapunov function:

2+1—cosq§ (15)

W=swisy
2Ty Ky

The time derivative of W is given as:

) . . .sing
WEt)=XX+yy+ ¢ P
1
= X(wy — v + vyc050) + J(—wX + vysind)
+ (wg — w) sing
ky

5 sing . sing
= —VX¥ — w——+ Xv,0050 + Jv sin® + wg——
kq key
Using the control law (14), the time derivative of the
Lyapunov function becomes:

W(t) = —k, %2 (16)

The time derivative of W (t) is negative because k, is a
positive gain. Then, using Barbalat’s theorem [20], the error
dynamics are asymptotically stable.

The above velocity control law, (14), is based on the
kinematic model. However, the motors generate control
torques, and cannot directly generate the velocity controls.
Therefore, it is necessary to design the torques for the mobile
platform based on the dynamic model, and then the control
torque will result in an actual velocity.

Using the actual and desired velocities, the velocity tracking
error can be expressed as:

2=V -V, (17)

where V' and V,; are the actual and desired velocity of the
mobile robot, respectively.
Let us propose the following control law:

T=MVy+CV;—Kz (18)

where K is a positive gain.
Inserting the controller equation (18) in the dynamic
equation (10), the error dynamics can be expressed as:

MZ+CZ+Kz=0 (19)

Proposition 3: The closed loop system is asymptotically
stable when using the proposed controllers (14) and (18).

To prove the stability of the closed loop system, we propose
the following positive Lyapunov function:

V= lZTII7IZ (20)
2
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The time derivative of V is given as follows:
. _ 1 .-
V=2zTM,z+ EZTMHZ @D

Using the error dynamics (19), (21) becomes:

. _ 1 -
V=2"[-CZ - Kz] + EzTMuz (22)
Using the property (11), the time derivation becomes:
V=-2"Kz (23)

Since K is a positive definite matrix, the time derivative V
is negative. Using Barbalat’s theorem [20], the error dynamics
are globally asymptotically stable.

V.SIMULATION RESULTS

The mobile robot which is shown in Fig. 1 is utilized to
demonstrate the effectiveness of the proposed control strategy.

The dynamic parameters for this mobile robot are illustrated in
Table 1.

TABLEI
SIMULATION PARAMETERS
Parameters Values
m, (kg) 23
m,, (kg) 28
L (m) 1
r (m) 0.04
d(m) 0.02
I, (kgm?) 01
I, (kgm?) 0021

The reference trajectory is chosen as gq.q =[x, ¥ ©,]7
then %, = V.cos®,; y, = V,.sin®,, @, = w,. where the linear
velocity and the reference angular velocity are chosen as
V,=1m /s and w, = 0.3 rad /s, respectively. The reference
initial position of the mobile platform is q;(0) =[2 2 45°]7,
while the actual initial position is q(0)=[0 0 0°]7. The
kinematic controller is defined in (14), where the gains are set
to be ky, =8; ky, = 10; and k4 = 12. The dynamic controller
gains are k, = diag[25,25]. The simulation results obtained
are shown in Figs. 3-9.

Regarding the simulation results, a good tracking in x-
position is shown in Fig. 3. Fig. 6, which shows the related
tracking errors, confirms such a good tracking. In the y-
position, Fig. 4 shows a good tracking of the desired
trajectory. According to the related tracking error presented in
Fig. 7, a good tracking in y-position is obtained. For the ©-
direction, the tracking of the desired trajectory is presented in
Fig. 5. It is clear from Fig. 8 that the related tracking error
converges to zero, which again confirms a good tracking.
Finally, from these simulation results, despite the different
starting point of the desired and the real values, the steady
state errors are very small and converge to zero, which
demonstrate an  effective control performance on
nonholonomic wheeled mobile robot.

y-position(m)

X-position(m)

time (s)

Fig. 3 Tracking trajectory of x-position

time (s)

Fig. 4 Tracking trajectory of y-position

IS

w

phi-position(rad)

Fig. 5 Tracking trajectory of ¢-direction
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time (s)

Fig. 8 Tracking error of ¢-direction
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Fig. 9 Tracking trajectory in (X, Y) plan

VI. CONCLUSION

This paper presents a control strategy based on Lyapunov
approach for nonholonomic wheeled mobile robot. First, a
kinematic controller was designed to generate a desired
velocity for left and right wheels. By considering the
kinematic controller of mobile platform, the dynamic
controller is developed to ensure a good tracking of the
desired trajectory. Simulation results obtained have
demonstrated the efficacy of the proposed control method in
controlling mobile robots. As a future work, the proposed
control strategy will be validated experimentally and will also
be applied to other kinds of electro- mechanical systems.

APPENDIX

A. Proof of Proposition 1

In this section, we attempt to prove the error dynamics
given in (13). From the nonholonomic constraint given by (2)
and A4, = [-sin(¢) cos(¢) 0], we can write:

xsing —ycos¢p = 0 = xzsingpg — yscosdpg = 0 24)
From the kinematic model given in (7) with d=0, we can
write:

cos¢ 017 [% cos¢ 01" [cosp 0
[sm¢ o] B 0] [sm¢ 0] E=1 9 @
o 1 |¢ o uUlo 1
Thus
v cosp 017 [%
[w] = [sind) 0 y (26)
o 1 |¢

We can now write:

vV =X coS}p + y sing
Vg = X4 €CoSPg + yg Singy

@7)
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Taking the first time derivative of (12), we get:

X = (g — x)cosp + (yg — y)sing — p(xg — x)sing

+¢(a — y)cosd

=Jw — v+ X4c08P + yy5ing
= Jw — v+ %4c05(pg — P) + yasin(pa — @)
=Jw—v+x4 (cos(d)d)cos((ﬁ) + sin(d)d)sin((f)))

+ 94 (sin(d)d)cos((f)) - cos(q,')d)sin((f)))

= Jw — v + (2gc05(pa) + Vasin(pa))cos(P)

+ (kgsingg — yacospy)sin(p)

Then:
¥=jw—v+ vdcos(é) (28)
¥ = —(q — x)sing + (Vg — y)cos¢p — ¢ (xq — x)cosp
— ¢(ya — y)sing
= —Xw + X sing — y cos¢p — x4Sing + y4 cosp
= —%w — %gsin(pg — ) + ¥4 cos(pg — @)
=—Xw — X4 (sin(d)d)cos((ﬁ) - cos(¢vd)sin(43)) +
Va (cos(d)d)cos( ) + sin(qbd)sin((ﬁ))
=—Xw— (xdsin( ) — ydcos(d)d))cos((ﬁ) }
+ (J'Cdcos(qbd) + ydsin(¢d))sin(¢)
After simplification, we obtain:
§ = —%w + vgsin(P) (29)
and the third term is given as follows:
$=¢d—¢=wa—w (30)
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