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According to similarity of piezoelectric layers’ properties, 

the amount of ܬ௔௡ and ܬ௦௡is equal to ܬ௔௡ and ܬ௦௡ and it is 
considered for actuators and sensors respectively. 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:7, 2016

1336

 

 

K

ca

 

wh

eq
 

 

wh

em
Th
 

 

wh

sta
 

K

fu

(

ac



de
sta
co

2

h

anJ 

 

elatelecta
PK

elatelecPK

apacity: 
 

pK 

here 1Y   ve

quals to zero:  

elePK 

here Y YI   is

mployed to con
his is amount o

here dK and 

ability of the c

1
2 q

LyapuV

K q

 

qK is certain 

unction and r

P
a

s K
J

J
)

chieved: 
 

Ly

p

V

K



 

d
a

s K
J

J
  is 

erivative of 
ability of sy
onstant collect

2

2

  ,

p n
h

h

h

z dz dx J





elatelects

s
P

a

J
K

J


cts
are matrix 

 

1
n

Y

pelect
n PZT




  

ector, ݌௡ for al

 ect p p p YL b I

s a ܻ ൈ ܻ uni

ntrol vibration
of applied vol

a d sK  v v

pK  are cert

controller, Lya

1
2

elastelecta

T T
p p

T
unov

K K



q

q M

positive ma

replacing Mqሷ

qK  the 

elastelect elastela

yapunov

T
p pK

 

a certain pos

Lyapunov fu
stem to cont

tion theory is g

2

2 p n

h

s n
h

h

J z



 

 

elatelecta
P

a

K  

of piezoelectr

 vT
p n n np p d

ll inputs unles

1
Y Y Y YI

 

it matrix, Lya

ns of the beam
ltage to actuato

p sK v  

tain positive m

apunov param

1
2

elastelecta

T
p

T

q

Mq q Kq

atrix. After d

q in it and b

following re

lecta

s T
d

a

J
K

J
 q

q





sitive matrix. 

unction has 
trol vibration
guaranteed. 

 dz  

ric patches dia

ss n which is 

apunov contro

m and make it 
ors: 

matrixes. To 

meter  


 

deriving Lya

by using (29

elation woul

 

So, it is proo

negative sign
n using of L

 

(24) 

(25) 

agonal 

(26) 

1 ݄௣௡ൗ  

(27) 

oller is 

stable. 

(28) 

prove 

(29) 

apunov 

9) and 

ld be 

(30) 

of that 

n and 
LaSalle 

It
geo
func
estim
(PM
rein
mat
men
natu

 

௖ܲ௥

beam
Mom
freq
freq
pres

In
refe

 

 

F 

L
decr
vibr

III.

t is difficult 
metrical and n
ctions are de
mate that p

MMA) and arm
nforcement r
terials and p
ntioned paper 
ural frequencie

cr

P
P

P
 ,

ൌ ௠ܧଶߨ ௠ܫ ⁄ܮ
m without ca
ment of inertia

quency of hom
quency of stud
sented results 

VALIDAT

*
cntV

First Fre

n the worse c
erence is 7%.

Fig. 3 Impact of 

Looking at Fig
reases the flu
ration amplitu

 SIMULATION

to find an e
natural condit
fined instead 

parameter [12
mchair (10, 10
respectively. 
piezoelectric 

[12]. The par
es are:  

, 
/2

10

/2

h

m

h

I d


 
L 

ଶ is critical bܮ
rbon- nanotub
a of that comp
mogenous be
died FG-CNT
of Yas and Sa

TAB
TION OF FIRST DIM

12%  

equency (ɷ1) 

condition max

f follower force 

g. 3, increasin
utter vibration
ude. Increasin

N AND DISCUS

equation that 
tions of system

of displacem
2]. Poly Mi
0) CNTs are u

Material pr
layers are t

rameters that 

dz , 110

h

A




10 110I A  

buckling force 
bes. ܫଵ଴, ܣଵଵ଴ 
posite beam an
eam. In Table
RC beam is c

amadi [6]. 
 

BLE I 
MENSIONLESS FR

FG-X

present 

1.7177 

 
imum of erro

on dimensionle

ng the amount
ns capacity a

ng the coeffic

SION 

can conside
m. So, some s
ment paramete
llet Methacry

used as matrix
roperties of 
the same as 
are used to de

/2

/2

h

m

h

E dz , 

for the comp
 and ܫ௠ repre
nd ω is the na
e I, dimension
compared with

REQUENCY 

X 

[6] 

1.6000 

or, comparing 

ess first frequen

t of follower f
and increases
ient of linear

r all 
hape 
er to 
ylate 

x and 
this 
the 

erive 

osite 
esent 
atural 
nless 
h the 

with 

ncy

force 
s the 
r and 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:7, 2016

1337

 

no
re
wh
ela
ev
th
pr
di

 

di
fra
fo
th
vib
vib
th
de

D

 

wh
pa


Fr
Th
ra

onlinear elasti
sistance again
hile increasin
astic foundati

ven causes the
an the condit

rocess of this 
stribution was
 

 

Fig. 4 Cont 

In this exper
rection of the
action is con

ollower force i
ickness of 1 
brations of th
brations are b
e beam vibr

esigned for thi

DIMENSIONLESS F

* 1cntV 
X 

* 1cntV 
X 

* 1cntV 
X 

In Table II, 
hen volume 
arameters, th

10 1L I A  

rom) in the t
hree different 

aised to be sho

ic foundation 
nst external loa
ng the shear v
ion induces a 
e system lead
tion that there
experiment, th

s considered 1

trol of FG-CNT

riment, the di
e composite b
sidered 17% 
is 104. Length 
mm assumed

he beam are s
blue. Here the 
rations to zer
is model is Un

TA
FIRST FREQUENCIE

STIF

12%  
KL=0 

ɷ1 

13.7633

12%  
KL=109

ɷ1 

15.7531

12%  
KL=109

ɷ1 

15.6489

the effect o
fraction of C
he first th

110  for one m

thickness dire
cases for ela

own. As the n

helps the sys
ads and the re
vibration stiff
reserve trend

d to buckling 
e is no elastic
he volume fra
2%. 

TRC beam unde

istribution of 
beam in the X

and the valu
of the piezoe

d to be 8 cm.
shown by red
controller sys
ro. The cont

nstable. 
 

ABLE II 
ES OF FG-CNTRC
FFNESSES 

KNL=0 

ɷ2 

3 55.8300 
9 KNL=109 

ɷ2 

1 56.3262 
9 KNL=109 

ɷ2 

9 56.1002 

f elastic foun
CNTs is 12%
hree frequen

mode of distrib

ection of the 
astic foundatio
numbers show

stem to show
sult is less vib
fness coeffici
d to the system

phenomenon 
c foundation. 
action in the x

er follower force

CNTs in thic
X -form, the v
ue of dimensi
electric layers 
. as the chat 
d and the cont
stem could con
trol system t

C BEAM FOR DIFF

KS=0 

ɷ3 

108.1748 

KS=0 

ɷ3 

108.4277 

KS=107 

ɷ3 

108.1178 

ndation coeffi
%, on dimensi

ncies of s

bution of CNT

beam is disp
on coefficients
w existence of 

 

w more 
bration 
ient of 
m and 
faster 

In the 
x-form 

e

ckness 
volume 
ionless 
with a 
shows 
trolled 
nverge 
that is 

FERENT 

ficients 
ionless 
system 

Ts (X-

played. 
s were 
f linear 

and 
syst
coef
line
syst

In
rest
con
foun
con
The
incr
of t
syst
foun
agai
The
amp

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

d nonlinear 
tematic frequ
fficient decre

ear and nonlin
tem vibration 

n this paper v
ting on elasti
trolled by an
ndation stiffn
troller on stab

e results of this
reases the stre
the system. T
tem vibration
ndation to the
inst external lo

e controlling s
plitudes to zer

A.M.K. Esawi, 
potential and c
2007. 
Y. Han, J. Ell
properties of P
Sci, vol.39, pp.3
H.S. Shen, “Non
reinforced comp
vol.91, pp.9–19,
Ke L-L, Yang
functionally gr
Compos Struct, 
M. Rafiee, J. Y
carbon nanotube
piezoelectric lay
M.H. Yas, N. S
nanotube-reinfor
foundation”, Int 
A. Mahieddine 
with piezoelectr
S. Li, H. Su a
material beams
environment”, A
H. Shen and Y
composite bea
environments”, 
H. Shen and Y
composite cylin
environments”, 
R. Ansari, M. F
“Nonlinear forc
nanotube-reinfor
vol.113, pp.316-
V. Azadi, M. A
FGM beam und
IJSSD, vol.3, 13
K. Yildirim, I. 
Timoshenko be
107, 2016. 

elastic stif
uencies while
eases systema
near elastic sti
capacity. 

IV. CON

ibration chara
ic foundation 
n active con

fness, follow
bility of the FG
s study show t

esses of the sy
The other par
n is elastic f
e system incr
oads totally an
system works
o. 

REFER

M.M. Farag, “C
current challenge

liott, “Molecular 
Polymer/carbon n
315–23, 2007. 
nlinear bending o
posite plates in th
, 2009. 
g J, Kitipornch
raded carbon na
vol.92, pp.676–8
Yang, S. Kitipor
e reinforced func

yers”, Composite 
amadi, ”Free vib
rced composite
J Pres Ves Pip, v
and M. Ouali, “

ric patch”, J. Eng.
and C. Cheng, “
 with surface-bo

Appl. Math. Mech
Y. Xiang, “Nonl
ams resting o
Engineering Stru

Y. Xiang,” Nonli
ndrical panels res
Composite Struct

FaghihShojaei, V.
ced vibration an
rced composite 
-327, 2014. 

Azadi, S.A. Fazel
der follower forc
350063 (19 pages)

Kucuk, “Active
am”, Journal of 

ffness coeffi
e adding the
atic frequenci
iffness coeffic

NCLUSION 

acteristic of a F
has been an

ntroller. The 
wer force an
G-CNTRC bea
that increasing

ystem and dec
rameter that h
foundation. B
reases resistan
nd frequencies
s well and co

RENCES  
Carbon nanotube r
es”, Mater Des, 

r dynamics simu
nanotube compos

of functionally gr
hermal environm

hai S, “Nonline
anotube-reinforce
3, 2010. 
rnchai, “Large a
ctionally graded 
Structures, vol.96
rations and buckl

e Timoshenko 
vol.98, pp.119–28
“Finite element f
 Appl. Sci, vol.3, 

“Free vibration o
onded piezoelect
h., Vol.30, pp.969
linear analysis o
n elastic foun
ctures, vol.56, pp
inear vibration o
sting on elastic f
tures, vol.111, pp
. Mohammadi, R
nalysis of functi
Timoshenko bea

lzadeh, E. Azadi
ce with piezoelec
), 2014. 
e piezoelectric v
the Franklin Ins

cients, incre
e shear stiff
es. It shows 
cients increase

FG-CNTRC b
nalyzed and 
effect of el

nd the vibra
am is investig
g of follower f
reases frequen
has effect on

By adding el
nce of the sy
s will increase
onverged vibra

reinforced compo
vol.28, pp.2394

ulations of the e
sites”, Compute 

raded carbon nano
ments”, Compos S

ear free vibratio
ed composit be

amplitude vibrati
composite beams
6, pp.716-725, 20
ling analysis of c

beams on e
8, 2012. 
formulation of a 
 pp.803–807, 200
of functionally g
tric layers in th

9–982, 2009. 
of nanotube-reinf
ndations in th
p.698–708, 2013.
of nanotube-reinf
foundations in th
.291–300, 2013.
. Gholami, F. Sad
ionally graded c
ams”, Compos S

i, “Active contro
ctric sensors/actu

vibration control 
stitute, vol.353, p

eases 
fness 

that 
e the 

beam 
then 

lastic 
ation 
ated. 
force 
ncies 
n the 
lastic 

ystem 
e too. 
ation 

osites: 
4–401, 

elastic 
Mater 

otube-
Struct, 

on of 
eams”, 

on of 
s with 

013. 
carbon 
elastic 

beam 
08. 
graded 
hermal 

forced 
hermal 

forced 
hermal 

deghi, 
carbon 
Struct, 

l of a 
uators, 

for a 
pp.95-


