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Quintic Spline Solution of Fourth-Order Parabolic
Equations Arising in Beam Theory

Reza Mohammadi, Mahdieh Sahebi

Abstract—We develop a method based on polynomial quintic
spline for numerical solution of fourth-order non-homogeneous
parabolic partial differential equation with variable coefficient. By
using polynomial quintic spline in off-step points in space and
finite difference in time directions, we obtained two three level
implicit methods. Stability analysis of the presented method has been
carried out. We solve four test problems numerically to validate the
derived method. Numerical comparison with other methods shows
the superiority of presented scheme.

Keywords—Fourth-order parabolic equation, variable coefficient,
polynomial quintic spline, off-step points, stability analysis.

I. INTRODUCTION

WE consider the one dimensional linear fourth-order
parabolic equation with variable coefficient of the

form:

∂2u

∂t2
+ μ(x)

∂4u

∂x4
= f(x, t), L0 ≤ x ≤ L1, t ≥ 0, (1)

subject to the initial conditions

u(x, 0) = φ(x),
ut(x, 0) = ψ(x), L0 ≤ x ≤ L1,

(2)

with appropriate boundary conditions

u(L0, t) = g0(t), u(L1, t) = g1(t),
uxx(L0, t) = p0(t), uxx(L1, t) = p1(t), t ≥ 0,

(3)

where u = u(x, t) is transverse displacement of the beam,
μ(x) > 0 is the ratio of flexural rigidity of the beam to its
mass per unit length [1], t and x are time and distance variables
respectively, f(x, t) is the dynamic driving force per unit mass,
and φ(x), ψ(x), g0(t), g1(t), p0(t) and p1(t) are continuous
functions. This equation represents (in dimensionless terms)
the problem of predicting the transient response of a uniform
flexible beam clamped at both ends, whose displacements and
velocities are initially known [2].

We shall assume that the initial and boundary conditions
are given with sufficient smoothness to maintain the order of
accuracy of the difference scheme and spline function.

Numerical methods for the solution of (1) have been carried
out by many authors. References [3]-[10] used finite difference
methods for the numerical solution of transverse vibrations.
But we can not apply the above procedures when the bending
moment is not prescribed at the end that is x = L0 and L1.

References [11]-[14], Collatz [8], Jain [3] have proposed
both explicit and implicit methods successfully. Parametric
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quintic spline methods are given by [15], [16] using nodal
points.

All above authors considered the homogenous case of
(1) with constant coefficient. The non-homogeneous problem
with constant coefficient has been studied by [17] based on
parametric quintic spline and by [18] based on sextic spline
using nodal points.

Reference [1] developed a family of numerical methods,
which are second order accurate in space and time, based on
an exact recurrence relation but in a case (1) is homogeneous.
The analytic solution of homogeneous case of (1) was obtained
by [19] using Adomian decomposition method.

Our aim is to construct a direct numerical method for
the solution of (1). In this study, we have derived three
level methods of O(k2 + h2) and O(k4 + h2) based on
polynomial quintic spline for the solution of fourth-order,
nonhomogeneous, parabolic equation with variable coefficient
governing the transverse vibrations of a homogeneous rod,
using off-step points.

The spline function we present has the form

T4 = Span{1, x, x2, x3, x4, x5}.
In Section II, derivation of the polynomial quintic spline

and spline relations are given. In Section III, for discretization
of (1) we present the formulation of our methods. We obtain
truncation error of our scheme and show that by choosing
different values of σ we can obtain various methods. In
Section IV, stability analysis have been carried out. Finally
in Section V, numerical evidence are included to demonstrate
the practical usefulness of our methods and confirm their
theoretical behavior.

II. QUINTIC SPLINE FUNCTIONS

We give the set of grid points in the interval [L0, L1]

x0 = L0, xl− 1
2
= L0 + (l − 1

2 )h, h = L1−L0

N ,

l = 1, 2, ..., N, xN = L1.

Definition 1. A quintic spline function Sl(x), interpolating to
a function u(x) on [L0, L1] defined as:

(1) In each subinterval [xl, xl+1], Sl(x) is a polynomial of
degree at most five.

(2) The first-fourth derivatives of Sl(x) are continuous on
[L0, L1].

(3) Sl(xl− 1
2
) = u(xl− 1

2
), l = 1(1)N .

The spline function Sl(x) for x ∈ [xl, xl+1] is defined by

Sl(x) =
5∑

j=0

a
(j)
l (x− xl)

j , l = 0, 1, 2, ..., N, (4)
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where a
(j)
l , j = 0, 1, ..., 5 are unknown constants to be

determine.
We further require that the values of the first-, second-,

third- and fourth-order derivatives be the same for the pair
of segments that join at each point (xl, ul).

To derive expression for the coefficients of (4) in terms of
ul− 1

2
, ul+ 1

2
, Ml− 1

2
, Ml+ 1

2
, Fl− 1

2
and Fl+ 1

2
we first denote:

(i) Sl(xl− 1
2
) = ul− 1

2
,

(ii) Sl(xl+ 1
2
) = ul+ 1

2
,

(iii) S′′
l (xl− 1

2
) = Ml− 1

2
,

(iv) S′′
l (xl+ 1

2
) = Ml+ 1

2
,

(v) S
(4)
l (xl− 1

2
) = Fl− 1

2
,

(vi) S
(4)
l (xl+ 1

2
) = Fl+ 1

2
.

(5)

From algebraic manipulation, we get:

a
(0)
l = 1

768 [5h
4(Fl− 1

2
+ Fl+ 1

2
)− 48h2(Ml− 1

2
+Ml+ 1

2
)+

384(ul− 1
2
+ ul+ 1

2
)],

a
(1)
l = 1

5760h [7h
4(Fl+ 1

2
− Fl− 1

2
) + 240h2(Ml− 1

2
−Ml+ 1

2
)+

5760(ul+ 1
2
− ul− 1

2
)],

a
(2)
l = 1

32 [−h2(Fl− 1
2
+ Fl+ 1

2
) + 8(Ml− 1

2
+Ml+ 1

2
)],

a
(3)
l = 1

144h [h
2(Fl− 1

2
− Fl+ 1

2
) + 24(Ml+ 1

2
−Ml− 1

2
)],

a
(4)
l = 1

48 (Fl− 1
2
+ Fl+ 1

2
),

a
(5)
l = 1

120h (Fi+ 1
2
+ Fl− 1

2
),

where l = 1, 2, ..., N .
The continuity of first derivative implies

Ml− 3
2
+ 22Ml− 1

2
+Ml+ 1

2
= h2

240 (7Fl− 3
2
− 254Fl− 1

2
+

7Fl+ 1
2
) + 24

h2 (ul− 3
2
− 2ul− 1

2
+ ul+ 1

2
), l = 2(1)N − 1,

(6)
and continuity of third derivative implies

Ml− 3
2
− 2Ml− 1

2
+Ml+ 1

2
= h2

24 (Fl− 3
2
+ 22Fl− 1

2
+ Fl+ 1

2
),

i = 2(1)N − 1.
(7)

Subtracting (7) from (6) and simplifying we obtain

Ml− 1
2
= 1

h2 (ul− 3
2
− 2ul− 1

2
+ ul+ 1

2
)− h2

1920 (Fl− 3
2
+

158Fl− 1
2
+ Fl+ 1

2
).

(8)

Elimination of Ml’s between (7) and (8) leads to the
following useful relation:

ul− 5
2
− 4ul− 3

2
+ 6ul− 1

2
− 4ul+ 1

2
+ ul+ 3

2
= h4

1920 (Fl− 5
2
+

236Fl− 3
2
+ 1446Fl− 1

2
+ 236Fl+ 1

2
+ Fl+ 3

2
),

l = 3(1)N − 2.
(9)

III. NUMERICAL METHOD

Let the region R = [L0, L1] × [0,∞], be discretized by
a set of points Rh,k which are the vertices of a grid points
(xl− 1

2
, tj), where xl− 1

2
= (l − 1

2 )h, l = 1, 2, ..., N , Nh =
L1 − L0, and tj = jk, j = 0, 1, 2, 3. The quantities h and k
are mesh size in the space and time directions respectively.

We develop an approximation for (1) in which the time
derivative is replaced by a finite difference and the space

derivative by the quintic spline function approximation. We
need the following finite difference approximation for the time
partial derivatives of u. Let:

utt
j
l =

δ2t
k2(1 + σδ2t )

uj
l , (10)

where σ is a parameter such that the finite difference
approximation to the time derivative is O(k2) for arbitrary
σ and of O(k4) for σ = 1

12 . If we choose σ = 1
4 and σ = 1

6
the finite difference approximations reduce to parametric cubic
and cubic spline relations respectively.

At the grid point (l, j), the differential equation (1) may be
discretized by:

utt
j
l + μluxxxx

j
l = f j

l . (11)

Equation (11) is then discretized and written in the form

δ2t
k2(1 + σδ2t )

uj
l + μlF

j
l = f j

l , (12)

where F j
l = S

(4)
l (xl, tj) is the fourth derivative of spline at

(xl, tj), δt is the central difference operator with respect to t
so that δ2t u

j
l = uj+1

l − 2uj
l + uj−1

l . From (12) we have

F j
l =

1

μl
(f j

l − δ2t
k2(1 + σδ2t )

uj
l ), (13)

then we have

F j

l± 1
2

=
1

μl± 1
2

(f j

l± 1
2

− δ2t
k2(1 + σδ2t )

uj

l± 1
2

), (14)

F j

l± 3
2

=
1

μl± 3
2

(f j

l± 3
2

− δ2t
k2(1 + σδ2t )

uj

l± 3
2

), (15)

and
F j

l− 5
2

=
1

μl− 5
2

(f j

l 52
− δ2t

k2(1 + σδ2t )
uj

l− 5
2

). (16)

Substituting (14)-(16) into useful relation (9) we obtain:

(1920σλ2 + 1
μ
l− 5

2

)uj+1

l− 5
2

+ (−7680σλ2 + 236
μ
l− 3

2

)uj+1

l− 3
2

+

(11520σλ2 + 1446
μ
l− 1

2

)uj+1

l− 1
2

+ (−7680σλ2 + 236
μ
l+1

2

)uj+1

l+ 1
2

+

(1920σλ2 + 1
μ
l+3

2

)uj+1

l+ 3
2

+ [1920(1− 2σ)λ2 − 2
μ
l− 5

2

]uj

l− 5
2

+(−7680(1− 2σ)λ2 − 472
μ
l− 3

2

)uj

l− 3
2

+ (11520(1− 2σ)λ2

− 2892
μ
l− 1

2

)uj

l− 1
2

+ (−7680(1− 2σ)λ2 − 472
μ
l+1

2

)uj

l+ 1
2

+

(1920(1− 2σ)λ2 − 2
μ
l+3

2

)uj

l+ 3
2

+ (1920σλ2 + 1
μ
l− 5

2

)uj−1

l− 5
2

+(−7680σλ2 + 236
μ
l− 3

2

)uj−1

l− 3
2

+ (11520σλ2 + 1446
μ
l− 1

2

)uj−1

l− 1
2

+(−7680σλ2 + 236
μ
l+1

2

)uj−1

l+ 1
2

+ (1920σλ2 + 1
μ
l+3

2

)uj−1

l+ 3
2

= σk2

μ
l− 5

2

(f j+1

l− 5
2

+ f j−1

l− 5
2

) + 236σk2

μ
l− 3

2

(f j+1

l− 3
2

+ f j−1

l− 3
2

)+

1446σk2

μ
l− 1

2

(f j+1

l− 1
2

+ f j−1

l− 1
2

) + 236σk2

μ
l+1

2

(f j+1

l+ 1
2

+ f j−1

l+ 1
2

)+

σk2

μ
l+3

2

(f j+1

l+ 3
2

+ f j−1

l+ 3
2

) + k2(1−2σ)
μ
l− 5

2

f j

l− 5
2

+ 236k2(1−2σ)
μ
l− 3

2

f j

l− 3
2

+

1446k2(1−2σ)
μ
l− 1

2

f j

l− 1
2

+ 236k2(1−2σ)
μ
l+1

2

f j

l+ 1
2

+ k2(1−2σ)
μ
l+3

2

f j

l+ 3
2

,

l = 3(1)N − 2,
(17)
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where λ = k
h2 is the mesh ratio.

Expanding (17) in Taylor series in terms of u(xl, tj) and
it’s derivatives, and replacing the derivatives involving t by
the relation

∂l+ju(x, t)

∂xl∂tj
= −∂l+2ju(x, t)

∂xl+2j
. (18)

We obtain the following truncation error:

T j
l = 1

24h
2D6

x − 1
48h

3D7
x + 1

148h
4D8

x − 1
607h

5D9
x+

1
2315h

3D10
x + ...,

(19)

where Dq
x = (∂

qu
∂xp )

j
l .

By choosing suitable values of σ we obtain the following
methods:
(1) If we choose σ �= 1

12 in (17) we obtain various schemes
of O(k2 + h2).
(2) If we choose σ = 1

12 in (17) we obtain a scheme of
O(k4 + h2).

IV. STABILITY ANALYSIS AND CONVERGENCE

The aim of this section is to obtain a valid stability condition
of the scheme (17). First we will prove the following Theorem.

Theorem 1. The scheme (17) for solving (1) is unconditionally
stable if σ ≥ 1

4 , and conditionally stable if σ < 1
4 .

Proof: By using Von Newmann’s method. We may
assume that the solution of (17) at the grid point (l, j) is of
the form:

uj
l = ξjeliθ, (20)

where i =
√−1, θ is real and ξ in general is complex.

Substituting (20) in homogenous part of (17), we obtain the
following characteristic equation

ξ2 + 2γξ + 1 = 0, (21)

where

γ =
15360λ2 sin4( θ2 )

ρ
− 1,

with
ρ = 8(3840σλ2 + 1

μ
l− 5

2

+ 1
μ
l+3

2

) sin4( θ2 )−
8( 1

μ
l− 5

2

+ 59
μ
l− 3

2

+ 59
μ
l+1

2

+ 1
μ
l+3

2

) sin2( θ2 )+

( 1
μ
l− 5

2

+ 236
μ
l− 3

2

+ 1446
μ
l− 1

2

+ 236
μ
l+1

2

+ 1
μ
l+3

2

).

We have to show the roots of (21) must be in unite circle.
We apply Routh-Hurwitz Criterion to (21) and get the

necessary and sufficient conditions for (17) to be stable as:

−1 ≤ 1− 15360λ2 sin4( θ2 )

ρ
≤ 1.

After simplification from the left inequality we obtain

16[960(4σ − 1)λ2 + 1
μ
l− 5

2

+ 1
μ
l+3

2

] sin4( θ2 )−
8( 1

μ
l− 5

2

+ 59
μ
l− 3

2

+ 59
μ
l+1

2

+ 1
μ
l+3

2

) sin2( θ2 )+

( 1
μ
l− 5

2

+ 236
μ
l− 3

2

+ 1446
μ
l− 1

2

+ 236
μ
l+1

2

+ 1
μ
l+3

2

) ≥ 0.

(22)

In the case σ ≥ 1
4 , the scheme (17) is unconditionally stable

and if σ < 1
4 the scheme is conditionally stable.

By using Lax theorem we conclude that: The scheme (17)
is convergent as long as stability criterion is satisfied.

V. NUMERICAL ILLUSTRATIONS

We applied the presented schemes to the following
fourth-order initial boundary value problems. The presented
scheme (17) is an implicit three level scheme, to start any
computation, it is necessary to know the solution of u, at
t = −k. The solution at t = −k may be approximated by
using Taylor series expansion of U−1

l and U0
l and using the

differential equation (1).
Since the initial values of u and ut are known explicitly

at t = 0. This implies all their successive tangential
derivatives are known at t = 0. So that the values of
u, ux, uxx, ..., ut, utx, ..., are known at t = 0.

Following [20] by the help of Taylor expansion, a
second-order approximation to u at t = −k can be written
as

U−1
l = U0

l − k(Ut)
0
l +

k2

2
(Utt)

0
l +O(k3). (23)

Using the initial values, in (1), we can obtain

(Utt)
0
l = [f(x, t)− μ(x)Uxxxx(x, t)]

0
l . (24)

Thus by using (23) and (24), we may obtain the numerical
solution of u at t = −k as follows

U−1
l = φ(lh)− kψ(lh) + k2

2 [f(lh, 0)−
μ(lh)φxxxx(lh)] +O(k3).

(25)

The relation (17) gives N − 4 linear algebraic equations in
the N unknowns ul− 1

2
, for l = 1, ..., N . We need four more

equations, two at each boundary, for the unique solution of
ul− 1

2
, l = 1, ..., N .

To use the schemes of order O(k2 + h2) and O(k4 + h2),
we use the following equations at boundaries:

−6uj
0 + 10uj

1
2

− 5uj
3
2

+ uj
5
2

= −5

4
h2(uxx)

j
0, l = 1, (26)

22
5 uj

0 − 9uj
1
2

+ 8uj
3
2

− 22
5 uj

5
2

+ uj
7
2

=

− 1
4h

2(uxx)
j
0, l = 2,

(27)

uj

N− 7
2

− 22
3 uj

N− 5
2

+ 8uj

N− 3
2

+ 9uj

N− 1
2

+ 22
5 uj

N =

− 1
4h

2(uxx)
j
N , l = N − 2,

(28)

uj

N− 5
2

− 5uj

N− 3
2

+ 10uj

N− 1
2

− 6uj
N =

− 5
4h

2(uxx)
j
N , l = N − 1.

(29)

The resulting linear system of equations can be solved.

Problem 1. Consider the non-homogenous linear fourth-order
parabolic equation with constant coefficient

∂2u

∂t2
+

∂4u

∂x4
= (π4 − 1) sinπx cos t, 0 ≤ x ≤ 1, t ≥ 0,

subject to the initial conditions

u(x, 0) = sinπx, , ut(x, 0) = 0 0 ≤ x ≤ 1,

and with appropriate boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.

The exact solution for this problem is

u(x, t) = sinπx cos t.
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We solve this problem with step size h = 0.05 and k = 0.005
giving λ = 2. By choosing σ = 1

4 and σ = 1
12 in scheme (17).

The computed solutions are compared with the exact solution
at grid points. The absolute errors are tabulate absolute errors
in Table I. We have done all the computations over 10 time
steps and then repeat the procedure for h = 0.05, k = 0.00125
and λ = 1

2 over 16 time steps. We also compare our results
with results in [10], [17], [18].

Problem 2. We consider the following homogenous
fourth-order parabolic equation

∂2u

∂t2
+ (

1

x
+

x4

120
)
∂4u

∂x4
= 0,

1

2
≤ x ≤ 1, t ≥ 0,

subject to the initial conditions

u(x, 0) = 0, , ut(x, 0) = 1 +
x5

120

1

2
≤ x ≤ 1,

and with appropriate boundary conditions

u( 12 , t) =
3841
3840 sin t, u(1, t) = 121

120 sin t,
uxx(

1
2 , t) =

1
48 sin t, uxx(

1
2 , t) =

1
6 sin t, t ≥ 0.

The exact solution for this problem is

u(x, t) = (1 +
x5

120
) sin t.

We solve this problem by using scheme (17) given in [9] and
[1] with some step size h&k as:

(i) h = 0.05 and k = 0.000125 (80 time steps) giving
λ = 0.05,

(ii) h = 0.05 and k = 0.00025 (40 time steps) giving λ =
0.1,

(iii) h = 0.05 and k = 0.000625 (16 time steps) giving
λ = 0.25.

Absolute maximum relative errors at time t = 0.01 are given
in Table II. Also, we compare our results with results in [1]
and [9].

Problem 3. We consider the following homogeneous
fourth-order parabolic equation

∂2u

∂t2
+ (

x

sinx
− 1)

∂4u

∂x4
= 0, 0 ≤ x ≤ 1, t ≥ 0,

subject to the initial conditions

u(x, 0) = x− sinx, , ut(x, 0) = −(x− sinx) 0 ≤ x ≤ 1,

and with appropriate boundary conditions

u(0, t) = 0, u(1, t) = e−t(1− sin 1),
uxx(1, t) = 0, uxx(1, t) = e−t sin 1, t ≥ 0.

The exact solution for this problem is

u(x, t) = (x− sinx)e−t.

We solve this problem with step size h = 0.05 and k = 0.005
giving λ = 2. By choosing σ = 1

4 and σ = 1
12 in scheme (17).

The computed solutions are compared with the exact solution
at grid points. The absolute errors are tabulate absolute errors
in Table III. We have done all the computations over 10 time
steps and then repeat the procedure for h = 0.05, k = 0.00125
and λ = 1

2 over 16 time steps.

Problem 4. We consider the following non-homogeneous
fourth-order parabolic equation

∂2u

∂t2
+(1+x)

∂4u

∂x4
= (x3+x4− 6

7!
x7) cos t, 0 ≤ x ≤ 1, t ≥ 0,

subject to the initial conditions

u(x, 0) =
6

7!
x7, , ut(x, 0) = 0 0 ≤ x ≤ 1,

and with appropriate boundary conditions

u(0, t) = 0, u(1, t) = 6
7! ) cos t,

uxx(1, t) = 0, uxx(1, t) =
1
20 cos t, t ≥ 0.

The exact solution for this problem is

u(x, t) =
6

7!
x7 cos t.

We solve this problem with step size h = 0.05 and k = 0.005
giving λ = 2. By choosing σ = 1

4 and σ = 1
12 in scheme (17).

The computed solutions are compared with the exact solution
at grid points. The absolute errors are tabulate absolute errors
in Table IV. We have done all the computations over 10 time
steps and then repeat the procedure for h = 0.05, k = 0.00125
and λ = 1

2 over 16 time steps.

TABLE I
ABSOLUTE ERRORS IN DISPLACEMENT FUNCTION u(x, t), h = 0.05, IN

PROBLEM 1
Methods λ Time x=0.1 x=0.2 x=0.3 x=0.4

steps
O(k2 + h2) 2 10 1.14(-5) 1.75(-5) 1.29(-5) 7.90(-6)
method 0.5 16 5.21(-6) 1.78(-6) 1.15(-6) 8.29(-7)
O(k4 + h2) 2 10 8.23(-6) 7.47(-6) 1.21(-6) 9.08(-7)
method 0.5 16 4.51(-6) 1.42(-6) 1.08(-6) 8.24(-7)
Evans & 2 10 2.20(-4) 4.10(-4) 5.40(-4) 6.20(-4)
Yousif [10] 0.5 16 2.50(-5) 4.70(-5) 6.60(-5) 7.80(-5)
Aziz 2 10 9.30(-6) 8.00(-6) 2.80(-6) 1.00(-6)
et. al [17] 0.5 16 9.20(-6) 7.90(-6) 2.80(-6) 9.80(-7)
Khan 2 10 1.87(-6) 2.13(-5) 1.49(-5) 8.60(-6)
et. al [18] 0.5 16 9.07(-6) 7.79(-6) 2.75(-6) 1.01(-6)

TABLE II
MAXIMUM RELATIVE ERROR MODULI AT TIME t = 0.01 IN SOLUTION OF

PROBLEM 2
λ O(k2 + h2) O(k4 + h2) In [9] In [1]
0.05 3.86(-7) 2.87(-7) 1.90(-6) 3.30(-7)
0.1 3.82(-7) 2.73(-7) 7.20(-7) 3.30(-7)
0.25 3.41(-7) 2.42(-7) 4.10(-7) 3.30(-7)

TABLE III
ABSOLUTE ERRORS IN DISPLACEMENT FUNCTION u(x, t), h = 0.05, IN

PROBLEM 3
Methods λ Time x = 0.1 x = 0.2 x = 0.3 x = 0.4

steps
O(k2 + h2) 2 10 1.06(-7) 3.47(-8) 8.65(-8) 2.18(-7)
method 0.5 16 1.02(-7) 1.69(-8) 6.35(-8) 1.36(-8)
O(k4 + h2) 2 10 1.04(-7) 3.28(-8) 8.40(-8) 2.11(-7)
method 0.5 16 1.01(-7) 1.30(-8) 6.12(-8) 1.27(-8)
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TABLE IV
ABSOLUTE ERRORS IN DISPLACEMENT FUNCTION u(x, t), h = 0.05, IN

PROBLEM 4
Methods λ Time x = 0.1 x = 0.2 x = 0.3 x = 0.4

steps
O(k2 + h2) 2 10 3.29(-9) 3.40(-9) 1.53(-8) 7.79(-8)
method 0.5 16 1.37(-9) 1.71(-10) 3.43(-10) 5.23(-10)
O(k4 + h2) 2 10 2.21(-9) 4.59(-10) 4.75(-9) 6.22(-9)
method 0.5 16 1.18(-9) 1.34(-10) 3.39(-10) 5.05(-10)
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