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Integer Programming Model for the Network
Design Problem with Facility Dependent Shortest

Path Routing
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Abstract—We consider a network design problem which has
shortest routing restriction based on the values determined by the
installed facilities on each arc. In conventional multicommodity
network design problem, a commodity can be routed through any
possible path when the capacity is available. But, we consider
a problem in which the commodity between two nodes must be
routed on a path which has shortest metric value and the link
metric value is determined by the installed facilities on the link.
By this routing restriction, the problem has a distinct characteristic.
We present an integer programming formulation containing the
primal-dual optimality conditions to the shortest path routing. We
give some computational results for the model.

Keywords—Integer programming, multicommodity network
design, routing, shortest path.

I. INTRODUCTION

NETWORK design is one of the most intensively studied
topics in combinatorial optimization. The main concern

is on the amount of capacity or facility to be installed
on the links of underlying network such that the given
traffic requirements among nodes are satisfied. Minimum
cost multicommodity network design problem is to find a
minimum cost facility installation to ensure that all given
commodities can flow simultaneously[3], [5], [6]. In particular,
the minimum cost multicommodity network design problem
with discontinuous step increasing cost functions is a basic
model in telecommunication network design [2], [4], [8], [10].
In the problem, the commodities can be routed any possible
route under the capacity of installed facilities.

Lee et al. [9] suggested a network design problem which
has a routing restriction depend on the installed link facilities
for a internet network design. When a physical network,
commodities and available link facilities are given, the
problem selects the facility to be installed on each link.
But, the commodity between two nodes must be routed on
a path that has shortest metric value determined by the link
facilities. The installed link facilities must accommodate all
traffic requirements and the objective is to minimize the cost
of the installed facilities. Under this routing restriction, the
problem has a special structure and it is hard to handle. Lee
et al. [9] showed that it is hard to define a neighborhood
structure of a feasible solution and then they proposed a
genetic algorithm to solve it.
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Kara and Verter [7] performed a study on the hazmat
network design problem which has the similar routing
restriction [7]. When the possible road network and the
required transportations (commodities) of hazmat material are
given, the problem selects arcs to be opened for hazmat
transportation. Then, the routing of hazmat commodities may
be routed through a shortest length path on the opened road
network. The objective is to minimize the total risk. Then,
the problem selects the arcs to be opened under the shortest
path routing restriction. They give a bilevel mathematical
formulation for the problem. But the model cannot be solved
directly because the model has too many variables and
constraints. They give an algorithm which constructs a tree
network and add some more arcs to the tree.

In this paper, we give an integer programming formulation
for the problem and some computational results for randomly
generated instances. We call the problem network design
problem with facility dependent shortest path routing
(NDPFDR).

II. PROBLEM DESCRIPTION

In this section, we give a detailed explanation of the problem
considered in this paper. When physical network G, traffic
(commodity) matrix and the link facilities are given, the
problem is to find minimum cost link facility installation plan
to meet the traffic requirements. In typical network design
problems, the routing for traffic requirements does not depend
on the type of the link facility. So, we can select the link
facility for each link to accommodate all traffic requirements
with minimum cost. But, in some applications, the routing of
traffic is restricted. We consider a problem has the routing
restriction such that the route for a commodity between two
nodes should be a shortest metric path when the link metric
values are given by the installed link facilities. Then, the routes
for commodities can be determined only after the link facility
is decided for each link. This routing restriction makes the
problem differ from typical network design problems.

When a feasible facility installation is given, let’s consider
the case that an installed facility on a link is changed to another
one. Under no routing restriction, if the changed facility has
a larger capacity then the changed solution is also a feasible
solution. On the other hand, the changed solution can be an
infeasible solution to NDFDRP. Moreover, a solution whose all
links have the maximum capacity facility can be an infeasible
solution.
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    (a) Traffic matrix

Type Capacity Metric Cost

I 5 10 10

II 10 5 20

(b) Link facilities

1 2

3 4

(c) Physical network

Fig. 1 Example: Input data

7

(a) An infeasible solution (b) A feasible solution
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Type II

Type II
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Type I
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1 2

3 4
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Fig. 2 Two solutions to the example

Lee et al. [9] gave an example in Fig. 1 to show this special
structure of the problem. Suppose that the traffic matrix and
physical network are given like in Figs. 1 (a) and (c) and we
consider two link facilities whose cost, metric and capacity are
given in Fig. 1 (b). Now, we consider two solutions in Fig. 2.
Fig. 2 (a) is a solution such that the link facility which has
the larger capacity(type II) is installed on every links. But the
solution is infeasible because the capacity of link (2, 4) is not
sufficient under the shortest metric routing. On the other hand,
Fig. 2 (b) is a solution such that the smaller capacity (type I)
is installed on the link (2, 4). But the solution is a feasible
solution. This is caused by the routing rule. The solution Fig.
2 (a) also has the capacity sufficient to accommodate all traffic
if the route for the traffic between node 1 and 4 is the same
as that in Fig. 2 (b). This means that a solution obtained by
increasing a link capacity from a feasible solution could be an
infeasible solution.

It is assumed that at most one link facility can be installed
on a link. It could be thought as an unreasonable assumption.
But, link facility t does not mean one real facility but a
combination of several real facilities. In other word, there are
some candidates of facility combinations and we select one
among them for each link.

III. MATHEMATICAL FORMULATION

In this section, we propose an integer programming
formulation for NDPFDR and give some comments. First, we

define notations and decision variables.

V : set of nodes in G

E : set of undirected links (i,j) in G

D : traffic matrix
T : set of link facilities
ct : cost of the type t facility, t = 1, 2, . . . , |T |
lte : metric of the type t facility when installed at link e,

e ∈ E, t = 1, 2, . . . , |T |
ut : capacity of the type t facility, t = 1, 2, . . . , |T |. (Assume

that ut < ut+1)
ok : source node of commodity k ∈ K

dk : destination node of commodity k ∈ K

tk : traffic requirements for k
wt : metric value of facility t

ytij : Binary variable denoting whether the facility t is
installed on link (i, j) ∈ E

zkij : Binary variable denoting whether the shortest path for
commodity k passes arc (i, j)

xk
i : (distance) Label of node i for demand pair k

Note that the links to be installed a facility are undirected
and a commodity flows through a directed path on the
network. Thus, the possible directed arc set is denoted by A
and then A contains two directed arc (i, j), (j, i) for each link
(i, j) ∈ E. With the above notations and decision variables,
we can formulate (NDPFDR) as follows.

(NDPFDR)

min
∑

t∈T

∑

e∈E

ctyte

s.t.
∑

t∈T

yte = 1 (1)

∀e ∈ E

xk
j − xk

i ≤
∑

t∈T

wtytij +M(1−
∑

t∈T

ytij) (2)

∀k ∈ K, (i, j) ∈ E

xk
i − xk

j ≤
∑

t∈T

wtytij +M(1−
∑

t∈T

ytij) (3)

∀k ∈ K, (i, j) ∈ E

xk
j − xk

i ≥
∑

t∈T

wtytij −M(1− zkij) (4)

∀k ∈ K, (i, j) ∈ E

xk
i − xk

j ≥
∑

t∈T

wtytij −M(1− zkji) (5)

∀k ∈ K, (i, j) ∈ E
∑

(ok,j)∈A

zkokj −
∑

(j,ok)∈A

zkjok = 1 (6)

∀k ∈ K
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∑

(dk,j)∈A

zkdkj
−

∑

(j,dk)∈A

zkjdk
= −1 (7)

∀k ∈ K
∑

(i,j)∈A

zkij −
∑

(j,i)∈A

zkji = 0 (8)

∀k ∈ K, i ∈ N{ok, dk}∑

k∈K

tk(zkij + zkji) ≤
∑

t∈T

utytij (9)

∀(i, j) ∈ E

ytij , z
k
ij ∈ {0, 1}, xk

i ≥ 0

Constraints (1) mean that at most one facility can be
installed on each link. Constraints (6)-(8) ensure that zkij’s
form a directed path for each commodity k ∈ K. Constraints
(9) ensure that the total flow on a link does not exceed the
capacity of installed link facility and a commodity can be
flowed an arc only when a facility is installed on the link. By
(6)-(8), a directed path from ok to dk is used for commodity
k but it does not guarantee that the path is a shortest metric
path. Constraints (2)-(5) ensure that the path has the shortest
metric value for each commodity. Variables xk

j (j ∈ N) are
dual variables of the shortest path problem for commodity k
and the constraints are the optimality condition for shortest
path problem on directed network. (2) and (3) ensure that
the solution is dual feasible to the shortest path problem for
each commodity and (4) and (5) make the variables hold the
complementary slackness conditions. Suppose that a facility
is installed on a link, then a path for the commodity k satisfy
the dual feasibility condition, xk

j ≤ xk
i+ length of (i, j) (link

metric value determined by the facility installed on the link)
by (2) and (3) for each direction. Moreover, the path pass
through the link then the condition holds with equality by (4)
and (5). For more details, refer to [1].

A. Strengthen the LP Relaxation

The LP relaxation by dropping the integrality condition
from the above formulation gives a lower bound on the optimal
objective value. Note that at most one of zkij and zjik can be
1 only when yij = 1 because a path for a commodity passes
a link only when a link facility is installed on the link. Thus,
the following constraints are valid inequalities.

zkij + zkji ≤
∑

t∈T

ytij ∀k ∈ K, (i, j) ∈ E (10)

Moreover, we can easily show that the some solutions to
the LP relaxation of (NDPFDR) cannot satisfy equation (10).
Thus, we can strengthen the LP relaxation bound by adding
(10).

IV. COMPUTATIONAL EXAMPLES

To test the proposed model, we apply the model on three
small networks which has 7, 10, and 13 nodes, respectively.
Two test network are in Fig. 3. We randomly generated the
commodities between node in networks and solve the problem

(a) 7-node network

(b) 10-node network

Fig. 3 Test Networks

TABLE I
EXPERIMENTAL RESULTS

(n, |E|, |K|) Opt LP1 LP2 Time(sec)

(7,11,42) 100 54.9 86.0 11.14

(10,22,30) 105 51.0 83.83 131.84

(13,25,37) 135 71.5 115.5 264.404

with the proposed model. We used the callable library the
callable library of CPLEX12.6 for c++ to solve the model.
The results are summarized in Table I. In the table, the first
column is the problem size. Three values mean the number of
nodes, the number of arcs, and the number of commodities,
respectively. The amount of each commodity is randomly
generated between 1 to 5. We used three link facilities which
has the following cost, metric value, and capacity.

l1 = 45, l2 = 4, l3 = 2
c1 = 10, c2 = 15, c3 = 70
u1 = 2, u2 = 4, u3 = 45

The second column in the table is the optimal objective
value. The third and fourth column is the objective value of
LP relaxations. The LP1 is the objective value from the LP
relaxation without constraints (10) and LP2 is that from the
LP relaxation contains constraints (10).

The results show that the model gives an optimal solution
for each problem. The constraints (10) reduce the gap by about
30 %. But, we cannot solve the bigger problems because the
computation time is much increased. Thus, some studies on
primal heuristics and finding some valid inequalities would be
a way to get some better results.

V. CONCLUSIONS

In this paper, we give an integer programming model for the
network design problem which has the routing restriction. The
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model contains primal variables, dual variables for the shortest
path routing and the complementary slackness conditions to
satisfy the routing restriction. We strengthened the model with
a valid inequality and solve the model with CPLEX. When the
number of commodities is increased, the model size is larger
and it needs too much time to solve the model. Thus, the
study on the polyhedron and some heuristic algorithms will
be another research work.
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