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Abstract—A repetitive training movement is an efficient method 

to improve the ability and movement performance of stroke survivors 
and help them to recover their lost motor function and acquire new 
skills. The ETS-MARSE is seven degrees of freedom (DOF) 
exoskeleton robot developed to be worn on the lateral side of the 
right upper-extremity to assist and rehabilitate the patients with 
upper-extremity dysfunction resulting from stroke. Practically, 
rehabilitation activities are repetitive tasks, which make the 
assistive/robotic systems to suffer from repetitive/periodic 
uncertainties and external perturbations induced by the high-order 
dynamic model (seven DOF) and interaction with human muscle 
which impact on the tracking performance and even on the stability 
of the exoskeleton. To ensure the robustness and the stability of the 
robot, a new nonlinear backstepping control was implemented with 
designed tests performed by healthy subjects. In order to limit and to 
reject the periodic/repetitive disturbances, an iterative estimator was 
integrated into the control of the system. The estimator does not need 
the precise dynamic model of the exoskeleton. Experimental results 
confirm the robustness and accuracy of the controller performance to 
deal with the external perturbation, and the effectiveness of the 
iterative estimator to reject the repetitive/periodic disturbances. 
 

Keywords—Backstepping control, iterative control, 
rehabilitation, ETS-MARSE. 

I. INTRODUCTION 

stroke is caused by the interruption of the blood supply to 
any portion of the brain, which controls all the functions 

of the organisms including thought, gesture and activities of 
daily living [1]. Stroke is the fourth leading cause of mortality 
and the primary cause of long-term disability in Canada. 
Every year, nearly 16000 Canadians die as a consequence of a 
stroke. Yearly, between 40000 and 50000 new strokes are 
reported in Canada [2]. Although stroke is more prevalent in 
the elderly, it can strike at any age, even children [3]. The 
most frequent after effects of a stroke are the loss of muscle 
control and sensation, often on one side of the body. Stroke 
victims find it difficult to assess the distance, the position and 
the velocity of movement [3]. Rehabilitation programs are 
considered the main methods to help stroke victims to recover 
their lost motor function and obtain new skills [3]. However, 
to get maximum benefits from the rehabilitation programs, an 
early therapeutic intervention is necessary because the 
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improvement becomes slower over time. Recently, a new 
method of rehabilitation based on robotic applications has 
attracted a lot of attention among the research community. 
This method relies principally on the ability of the robot to 
repeat accurately the therapeutic tasks (such as a rehabilitation 
activity) for a longer period of time allowing unlimited 
repetition of the rehabilitation activities. 

Many researchers have been developing rehabilitation 
robots, for instance: InMotion [4] has two DOF, Assisted 
Rehabilitation and Measurement Guide (ARMin) [5] have six 
DOFs, intelligent Pneumatic Arm Movement (iPAM) [6] have 
five DOFs. These robots are connected to the subject upper-
limb. The patient can move his arm in the workspace 
depending on the available DOF of the exoskeleton [7]. To 
assist stroke survivors with upper limb dysfunction, we have 
created a novel seven DOFs exoskeleton robot called ETS-
MARSE [8], [9]. It can perform a variety of arm movements 
(Table I) and is able to perform passive and active 
rehabilitation activities. 

Numerous control techniques have been developed to 
control the exoskeleton robots for providing rehabilitation 
therapy, such as a simple PID control implemented in [10]; an 
intelligent PID control that combines neural networks with 
PID, implemented in [11]; a nonlinear modified computed 
torque control which requires good estimation of robot 
dynamic parameters implemented in [12]. Besides those, a 
robust sliding mode control with exponential reaching law was 
proposed in [13] to improve the performance of the robot and 
limit the chattering problem generated by the high-frequency 
activity of the control signal. However, there are new 
nonlinear control techniques that do not require accurate 
estimation of parameters of robot dynamic model; such as a 
fuzzy controller based on sliding mode control proposed in 
[14], where the adaptation of the dynamic parameters was 
done by using a fuzzy controller. This approach is aimed to 
ameliorate the performance of the robot and limit the 
chattering phenomenon that could produce damage to the 
motors.  

An adaptive control based on neural network is presented in 
[15] to estimate the uncertain parameters and external 
disturbances. Neural networks and fuzzy logic are powerful 
tools used to estimate the dynamic parameters [16]. However, 
fuzzy logic has a slow response time as the advanced 
nonlinear technique need bulky calculation [8]. Practically, the 
trajectories of rehabilitation therapy are repetitive; that make a 
robotic exoskeleton subject to a periodic and/or repetitive 
perturbation and uncertainties caused by the variation of 
dynamic parameters of the robot (such as ETS-MARSE) and 
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from the environment (such as a different bodily condition of 
patients) [17]. Moreover, when a robot is tracking/following a 
desired trajectory, particularly a complex motion, the 
uncertainties and the external perturbation can be turned into a 
nonlinear dynamic term with unknown parameters that causes 
problems on the control which negatively impact the 
performance and even the stability of the robot.  

To ensure the asymptotic stability and the robustness of the 
exoskeleton robot, a new nonlinear iterative backstepping 
control was implemented on the ETS-MARSE. This approach 
permits to design the control law in several steps based on a 
Lyapunov candidate function which is positive definite and its 
derivative is always decreasing [18], [19]. Moreover, the 
iterative backstepping control is capable of supplying a high 
degree of accuracy in the presence of uncertainties and 
external disturbances and reject them [17], [20]. A few 
techniques have been found to combine nonlinear control and 
iterative control [21], [22]. The main advantage of the iterative 
estimator control is that it does not require precise knowledge 
of the robot model’s dynamic parameters and provides good 
tracking performance despite the presence of disturbances. 

To evaluate the accuracy and the robustness of the 
controller we have implemented trajectory tracking 
conforming to prescribed passive therapeutic activities [13]. 
All the experiments were performed with healthy subjects. In 
the next section, the kinematics and workspace of ETS-
MARSE are presented and the control approach is described. 
Experimental results are exhibited in Section III; finally, the 

conclusion and future work are presented in Section IV. 

II. CONTROL DESIGN 

A. Description of ETS-MARSE Robot 

The modeling of the exoskeleton was done based on the 
joints and movements of the human upper-limb. In the model 
shown in Fig. 1, joints one, two and three represent the 
scapulohumeral joint (shoulder joint). Joints one and two 
correspond respectively to the horizontal and vertical 
extension/flexion of the shoulder joint, while joint three 
corresponds to the external/internal rotation of the shoulder 
joint. The joint four corresponds to the elbow flexion/ 
extension. The joint five represents supination/pronation of the 
forearm and joints six and seven correspond respectively to 
ulnar/radial deviation, and flexion/extension of the wrist joint 
[9]. The workspace of the exoskeleton is presented in Table I. 
The kinematic analysis of the exoskeleton ETS-MARSE is 
based on the frames [23] attached as shown in Fig. 1. 

B. Control 

The technique of the iterative backstepping control is 
proposed for the dynamic of the exoskeleton ETS-MARSE. 
The dynamic behavior can be expressed as: 

 
, ,   (1) 

 
where ∈ 	is the joint angles vector, ∈ is the 
inertia matrix, , ∈ 	is the Coriolis/centrifugal 

matrix, ∈  is the gravity vector,  is the generalized 
torques vector, and F θ, θ 	is nonlinear vector of friction. The 
Coulomb friction model can be written as: 

 

, τ ∗ sign θ   (2) 
 

where  is the Coulomb constant friction. ∈ is the 
unknown bounded perturbation which represents nonlinear 
dynamic perturbations, assumed to be bounded and satisfies 
the following hypothesis. 
Theorem 1: [24], [25] the perturbation varying in time  is 
continuous and periodic in time with known period T. It can 
be expressed as: 

 
  (3) 

 
Equation (1) can be expressed as: 
 

, ,
  

(4) 

 
The objectives of the control are to ensure the global 

stability of the robot by using the backstepping control, and 
reject the external disturbances and uncertainties by 
integrating powerful iterative control. The first step in this 
strategy is to choose the dynamic of the errors. We can 
determine the error as following: 

 
  (5) 

 
where, …… .  is the desired trajectory for all 
joints. Considering the Lyapunov function candidate: 

 

  (6) 

 
Differentiating (5) with respect to time yields: 

 

  (7) 
 

The derivative of  is given by: 
 

  

 
(8) 

 

The stabilization of can be obtained by introducing a 
virtual control input	 	: 

 

  (9) 
 
where  is a 7x7 diagonal positive-definite matrix. 
Substituting (9) in (8) we obtain: 
 

  (10) 
 
The second error variable is considered: 

 

  (11) 
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