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 
Abstract—Artificial joint replacements such as total knee and 

total hip prosthesis have been applied to the patients who affected by 
osteoarthritis. Although different material combinations are used for 
these joints, biopolymers are most commonly preferred materials 
especially for acetabular cup and tibial component of hip and knee 
joints respectively. The main limitation that shortens the service life 
of these prostheses is wear. Wear is complicated phenomena and it 
must be considered with friction and lubrication. In this study, micro 
wave (MW) induced argon+oxygen plasma surface modification 
were applied on ultra-high molecular weight polyethylene 
(UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) 
biopolymer surfaces to improve surface wettability and wear 
resistance of the surfaces. Contact angel measurement method was 
used for determination of wettability. Ball-on-disc wear test was 
applied under 25% bovine serum lubrication conditions. The results 
show that surface wettability and wear resistance of both material 
samples were increased by plasma surface modification.  
 

Keywords—Artificial joints, plasma surface modification, 
UHMWPE, vitamin E, wear. 

I. INTRODUCTION 

OLYMERS are widely used in biomedical applications 
such as orthopedic prosthesis, micro-fluidics, drug 

delivery systems, micro-reactors for biological reactions etc. 
because of low cost, biocompatibility and reliability [1]. 
UHMWPE is the most preferred polymer in the orthopedic 
prosthesis application area such as total knee and hip joints. 
However, wear problem of this material has not been solved 
yet. Structural and surface modifications such as radiation 
cross-linking of UHMWPE and addition of α-tocopherol 
(vitamin E) in to the UHMWPE structure as a natural 
antioxidant have been applied. Although better wear resistance 
was obtained from these applications, adequate material 
properties for enhancing service life of the prosthesis cannot 
be achieved yet. Therefore, studies have been going on for 
improvement of tribological properties of the UHMWPE [2]-
[4].  

Plasma surface treatment of the polymers is one of the most 
effective and economical technique to modify the surface 
properties of the polymeric materials without changing bulk 
material [5]. It is possible to selectively modify the surfaces to 
enhance wide variety of surface properties such as surface 
wettability, functionality, hydrophilicity, hydrophobicity, 
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surface roughness, scratch resistance, wear resistance, 
physical, chemical and mechanical properties by applying 
proper plasma method and gasses to the polymer surfaces [6}-
[8]. Therefore, plasma surface modification has become 
increasingly popular method to improve the functionally 
required properties of biomaterials instead of developing new 
materials with expensive and time consuming processes [9]. 

Liu et al. studied on argon and oxygen plasma surface 
modification of UHMWPE and they concluded that both 
plasma surface treatment applications improved the 
wettability, surface hardness, anti-scratch and wear resistance 
of UHMWPE [10], [11].  

In another study Noeske et al. searched effect of 
atmospheric plasma jet on adhesion property of a series of 
polymers included High-Density Polyethylene (HD-PE). They 
reported that adhesion property of the plasma treated polymers 
increased by oxygen functionality of the surfaces [12]. In 
previous study [13], argon plasma surface modification was 
applied to surface of UHMWPE textile. It was reported that 
the peel strength of the UHMWPE increased and contact angle 
decreased from 80o to 28o [13].  

Plasma is the fourth state of matter and composed highly 
excited, ionic, atomic, molecular and radical species. Plasma 
gasses are excited in to these energetic levels by microwave, 
radio frequency, corona and dielectric barrier [8]. Much 
functionality will arise near the surface while the plasma 
applied to the polymer with proper plasma density and 
treatment time. In activation process, firstly hydrogen atoms 
are abstracted from the polymer chains by breaking the bond 
with the plasma energy. So radicals are created at the midpoint 
of the polymer chains and these radicals then built up new 
bonds with each other by crosslinking and with species that 
are activated by plasma gas [5], [9]. Type of the applied 
plasma gas is one of the most important parameter to obtain 
required surface activation. Also if gas mixture is used, the 
ratio of gasses in this mixture is important as well. Plasma 
induced activation of polymer surface, without changing bulk 
properties generally divided in two groups according to the 
nature of plasma gas, as reactive or inert. Oxygen (O2) is most 
common active gas for plasma treatment. Besides, carbon 
dioxide (CO2) and ammonia (NH3) are generally used as 
active plasma gasses. Argon (Ar) and Helium (He) are the 
inert gasses that used for plasma treatment [14]-[18].  

Application of different plasma gasses may result different 
surface chemical structure so different surface mechanical 
properties. Different functional groups such as C–O, C=O, 
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