
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:10, No:4, 2016

488

 

 

 
Abstract—The present paper aims to investigate the effects of the 

welding process parameters and cooling state on the weld bead 
geometry, mechanical properties and microstructure characteristics 
for weldments of AISI 304L stainless steel. The welding process was 
carried out using TIG welding with pulsed/non-pulsed current 
techniques. The cooling state was introduced as an input parameter to 
investigate the main effects on the structure morphology and thereby 
the mechanical property. This paper clarifies microstructure- 
mechanical property relationship of the welded specimens. In this 
work, the selected pulse frequency levels were 5-500 Hz in order to 
study the effect of low and high frequencies on the weldment 
characteristics using filler metal of ER 308LSi. The key findings of 
this work clarified that the pulse frequency has a significant effect on 
the breaking of the dendrite arms during the welding process and so 
strongly influences on the tensile strength and microhardness. The 
cooling state also significantly affects on the microstructure texture 
and thereby, the mechanical properties. The most important factor 
affects the bead geometry and aspect ratio is the travel speed and 
pulse frequency. 
 

Keywords—Microstructure, mechanical properties, pulse 
frequency, high pulse frequency, austenitic stainless steel, TIG 
welding.  

I. INTRODUCTION 

HE austenitic stainless steels (ASS) are probably the most 
commonly used material of all the stainless steels 

especially the 300 series. AISI 304L is an important grade of 
the ASS, which is commonly used in many of important 
industries such as containers of transporting chemicals, oil 
refinery, nuclear reactor tanks, dairy industries, and textile 
industries [1]. Tungsten inert gas (TIG) welding is the most 
widely used process for joining the stainless steel components 
[2]. It is very suitable for thin sheets due to its easier 
applicability, flexibility, and better economy [3]. The 
improving in the weld quality depends on the improvement in 
process parameters which requires the use of improved 
welding techniques and materials. Pulsed current TIG welding 
(PCTW) is a variation of continuous current TIG welding 
(CCTW) where involves cycling the welding current at a 
given regular frequency from a high level to low level [4]. In 
PCTW process, the peak current (Ip) is selected to melt the 
filler and base metal and to generate adequate penetration, 
whereas the base current (Ib) is set at a level sufficient to 
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maintain a stable arc [5]. By contrast, in CCTW, the heat 
required to melt the filler and base metals is supplied only 
during Ip pulses allowing the heat to dissipate into the base 
material [6]. PCTW has various good aspects over CCTW 
process, such as arc stability,  reducing the amount of heat 
input, and reducing the residual stresses of stainless steel 
welded parts [7], [8]. Ramkumar et al. [9] used the pulsed and 
conventional TIG welding to study the weldability of AISI 
904L stainless steel. They demonstrated that the PCTW 
generally offers better tensile properties as compared to 
CCTW weldments. Prasad et al. [10] used pulsed current in 
micro plasma arc welding process to study the quality of 
different types of stainless steels. They concluded that the 
AISI 304L achieved better quality characteristics compared to 
AISI 316L, AISI 316Ti, and AISI 321. Dinesh Kumar et al. 
[11] used Taguchi method to analyze and optimize the process 
parameters for pulsed TIG welding process of AISI 304L 
stainless steels. They showed that travel speed and current are 
the most important parameters which affect the response 
variables. 

From the literature review, it was observed that there is a 
huge need for improving the quality of the ASS sheet 
weldments, which are used for various applications such as 
pressure vessels, automobile and aerospace industries. It 
seems worthwhile to select the most suitable welding 
parametric combination that would be able to create 
microstructural changes and weld bead characteristics and 
thereby improving the mechanical performance weld quality. 
The present paper highlights an experimental comparative 
study carried out to describe in detail the effects of pulse 
frequency and continuous water cooling system on the weld 
area (HAZ and bead width), depth of penetration and finding 
the optimal aspect ratios. Furthermore, microstructural aspects 
of the HAZ and weld metal and mechanical properties such as 
tensile strength and Vickers's micro-hardness of TIG 
weldments using AISI 304L ASS were investigated and 
correlated to the effects of process parameters on the 
microstructure of the weldments of CCTW and PCTW in low 
and high frequencies. 

II. EXPERIMENTAL PROCEDURE  

A. Material and Welding Procedure 

In this work, a 3.8 mm thick of AISI 304L stainless steel 
sheets have been welded by TIG technique. The filler metal 
selected for welding was ER 308LSi stainless steel solid wire 
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Fig. 10 UTS versus F and Cs comparison to BM 
 

 

Fig. 11 The effects of F and Cs on the microhardness (HV) 

IV. CONCLUSIONS 

This paper presented the optimization of welding process 
parameters using 3.8 mm sheets of AISI 304L stainless steel 
material through experimental study for non-pulsed & pulsed 
current TIG welding. The main outcomes of this work have 
been deduced as concluding summary as follows: 
1. The results show that TS is the most significant factor 

influences the aspect ratio with contribution percent of 
47% followed by F of the contribution of 25%, then Cs 
with contribution percent of 19% and no effect of wire 
feeding rate. 

2. Optimal aspect ratio can be achieved through using HF-
PCTW process with the following optimal values of 
welding conditions: TS 2 mm/s, WFS 0 m/min, F 500 Hz, 
and continuous water cooling rate system. F significantly 
affects by reducing the width of the weld area and hence 
reducing the HAZ. 

3. HF-PCTW significantly influences on the morphology of 
the welded parts and hence improves the mechanical 
properties. Since it significantly affects the grain size 
through breaking the dendrite arms as well as the amount 
of δ-ferrite is relatively higher. Whereas, Cs factor also 
affects the tensile strength, since it creates a fine structure 
with high residual δ-ferrite content which leads to 
improving the properties of the weldments. 

4. The highest tensile strength achieved during this study is 
766 MPa achieved at a frequency of 500 Hz and using the 
continuous water cooling system. Thus, the HF-PCTW 
can be used to fabricate joints with a tensile strength 
superior to that of CCTW process. The highest hardness 

reached to 308 HV in weld zone, also achieved at high 
frequency and continuous water cooling system.  

5. From the microstructure analysis, there is no evidence of 
any sensitization of the welded parts can be seen for all 
weldments (CCTW and PCTW) also no other defects can 
be observed. 
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