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Abstract—In this paper, we consider a drift flux mixture model 

of the blood flow. The mixture consists of gas phase which is carbon 
dioxide and liquid phase which is an aqueous carbon dioxide 
solution. This model was used to determine the distributions of the 
mixture velocity, the mixture pressure, and the carbon dioxide 
pressure. These theoretical data are used to determine a measurement 
method of mean gas pressure through the determination of radial 
velocity distribution. This method can be applicable in experimental 
domain. 

 
Keywords—Mean carbon dioxide pressure, mean mixture 

pressure, mixture velocity, radial velocity.  

I. INTRODUCTION 

OR security or clinical purposes, it remains usually 
interesting to measure the pressure of the gas in mixture of 

gas and liquid in many kinds of fluid flows. For the clinical 
case for example, the measurement of carbon dioxide arterial 
pressure is extremely needed in intensive care units. 

The two-phase flow phenomena are observed in different 
systems like transport systems (pump and ejectors), process 
systems (chemical reactors, phase separators), heat transfer 
systems (evaporators, condensers), power systems (boiling 
water, two-phase propulsors), biological systems 
(cardiovascular system, blood flow), and so on [1]. The 
possible phases' combinations of two-phase flow in pipe are 
gas and liquid phases, solid and liquid phases, gas and solid 
phases, and two immiscible liquid phases [1]. Two-phase flow 
is described by three models as homogeneous equilibrium 
mixture model [2], two-fluid model [1]-[3], and drift flux 
model [1]. These models are governed by the same physical 
laws of transport of mass, momentum, and energy.  

The combination of gas and liquid phases is the most 
frequent for the two-phase flow in biological system for 
example plasmatic solution and carbon dioxide. In the case of 
miscible gas, suitable model is the Drift flux [4]. The study of 
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gas phase in a mixture by the considered model brings 
important data to analyze and understand the problems of a 
particular blood system. In this work, we are interested in the 
study of a system consisting of a two-phase incompressible 
Newtonian mixture moving horizontally through a constricted 
rigid cylindrical tube with a constant cross-section. For this, 
we consider an aqueous carbon dioxide solution with carbon 
dioxide gas. This mixture is used to simulate the behaviour of 
the blood flow and to determine the carbon dioxide pressure 
existing in the considered mixture. In fact, the theoretical 
study of this system affords distributions of mixture velocities, 
mixture pressure, and carbon dioxide pressure [4]. This study 
can allow the evaluation of mean gas pressure through the 
determination of radial velocities distribution. 

II. METHODS AND MATERIALS 

A. Calculation 

For the simulation of physical parameters of the mixture, 
MATLAB is used. Thus, the calculation undergoes the 
evaluation of the mean mixture pressure and the mean carbon 
dioxide pressure knowing radial velocities distribution.  

B. Mathematical Model 

In the first step, the arterial blood was modelled as an 
aqueous solution of carbon dioxide mixed with the carbon 
dioxide gas, and the arterial wall is modelled as a rigid 
canalization [4]. The Drift flux model allows the correlation 
between the flow velocities and the mixture pressure. The 
governing equations describing physical parameters in the 
considered model are mass and momentum conservation 
equations (1)-(3).  
1) Mixture continuity equation 

 
																																 . 0                                    (1) 

 
2) Continuity equation for dispersed phase 

 

   			 . . 	                       (2) 

 
3) Mixture momentum equation 

 

. . .  (3) 

 
where, phase1 presents liquid phase, phase2 presents gas phse, 
Um is the mixture velocity vector, ρm is the mixture density, α2 
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