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 
Abstract—In this paper, the analytical tuning rules of IMC-PID 

controller are presented for the multivariable Smith predictor that 
involved the ideal decoupling. Accordingly, the decoupler is first 
introduced into the multivariable Smith predictor control system by a 
well-known approach of ideal decoupling, which is compactly 
extended for general nxn multivariable processes and the 
multivariable Smith predictor controller is then obtained in terms of 
the multiple single-loop Smith predictor controllers. The tuning rules 
of PID controller in series with filter are found by using Maclaurin 
approximation. Many multivariable industrial processes are 
employed to demonstrate the simplicity and effectiveness of the 
presented method. The simulation results show the superior 
performances of presented method in compared with the other 
methods. 
 

Keywords—Ideal decoupler, IMC-PID controller, multivariable 
Smith predictor, Maclaurin approximation.  

I. INTRODUCTION 

HE intricate coupling between many measurement and 
control signals leads to complex interactions between 

input and output variables, which complicate the design of 
multi-loop PI/PID controllers for multivariable processes with 
multiple time delays. Since the controllers interact with each 
other, each loop cannot be tuned independently (i.e., adjusting 
the controller of one loop significantly affects the performance 
of the other loops and can destabilize the entire control 
system). Decentralized (multi-loop) or centralized control 
schemes are usually adopted to address these interactions. For 
controlling multivariable process with modest interaction that 
closely decoupled, multi-loop PI/PID controllers are usually 
employed because of their effectiveness, simplicity, failure-
tolerant structure, and adequate performance [1]–[6]. 
However, they often perform poorly when the interactions are 
significant. In such cases, centralized (fully cross-coupled 
multivariable) PID controllers are advisable. Centralized 
control approach can be classified into two approaches: A pure 
centralized strategy [7], [8] and a decoupling network 
combined with multi-loop controllers. Due to their attractive 
features, decoupling networks with multi-loop PI/PID 
controllers have been of significant interest in both academia 
and industry. Numerous decoupling schemes have been 
developed and explored [9]–[12], though most only consider 
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two-input, two-output (TITO) systems with dynamic 
decoupling. However, many multivariable processes studied in 
control theory and employed in industry consist of more than 
two inputs and outputs. 

The proposed method’s effectiveness was demonstrated 
through several examples of interacting multivariable 
processes. Simulation results showed that the proposed 
method consistently performed better than other existing 
methods. 

 

 

Fig. 1 Multivariable Smith predictor control 

II. METHODOLOGY 
 

A. Multivariable Smith Predictor 

Consider a multivariable process with the following transfer 
matrix: 
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where, gij(s)= gij0(s)e-Lijs and gij0(s) are strictly proper, stable 
scalar rational functions, and nonnegative Lij are the time 
delay associated with gij(s). Let the delay-free part of the 
process be denoted by G0 = [gij0]. 

The multivariable Smith predictor control scheme is shown 

in Fig. 1, where G(s) and Ĝ are the process and its model, 

respectively. 0Ĝ  is the same as Ĝ  except that all the delays 

have been removed. C(s) is the primary controller. When the 

model is perfect, i.e., Ĝ  = G and 0 0Ĝ G , the closed-loop 

transfer function from R to Y becomes: 
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  1

0

 H GC I G C
 
 (2) 

 
It can be seen that (I + G0C) contains no delays that also 

provided in the multivariable controller C. It suggests that the 
primary controller C can be designed with respect to the delay 
free part G0 and this is the main attractiveness of the control 
scheme. However, unlike SISO case, even though C is 
designed such that H0 = G0C[I + G0C]-1 has desired 
performance, the actual system performance cannot be 
guaranteed. This can be seen from the closed-loop transfer 
function as: 

 

  1

0

  -1 -1
0 0 0 0H GG G C I G C GG H   (3) 

 
The actual system performance could be quite poor due to 

the existence of -1
0GG . For the special case where the delays 

of all the elements in each row of the transfer matrix are 

identical, the finite poles and zeros in -1
0GG  will all be 

cancelled. In this case,  iiL sdiag e-1
0GG  and the system 

output is the delayed output of H0. However, in general this 
desired property is not preserved. In order to overcome this 
problem and improve the performance of the multivariable 
Smith predictor control system, a decoupling Smith predictor 
control scheme depicted in Fig. 2 is introduced, where D is a 
decoupler for G, Q the decoupled process GD, and Q0 is the 
same as Q except that all the delays are removed. Suppose that 
GD is decoupled, it is obvious that the Q and Q0 will be 
diagonal matrices. The multivariable Smith predictor design is 
then simplified to multiple single-loop Smith predictor and 
various simple methods can be utilized to design the control 
systems.  

 

 

Fig. 2 Decoupling Smith control scheme 

B. Ideal Decoupling Smith Control Scheme 

The decoupled process in the ideal decoupling system is 
expected to have a diagonal transfer function matrix in the 
following form: 
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For GD to be decoupled, it is clear that the (i, j)th element of 

an ideal decoupler can be expressed generally as: 
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C. Simplified Decoupling Design for Typical Processes 

This section analytically develops an ideal decoupling for 
2 2  processes as  
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In accordance with the decoupling requirement in (4), four 

equations can be established as 
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The decoupler elements are then given by the solution: 
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The aforementioned procedure can also be simply applied 

to derive analytical forms of decoupling elements for other 
high-dimensional multivariable processes with multiple time 
delays.  

As one can see in (4), when the order of the process 
increases, the resulting transfer functions of the decoupler 
elements become too complicated to be directly used in the 
design of the decoupling system. Therefore, it is necessary to 
approximate them suitably in reduced-order models. It should 
be noted that any reduction technique can be applied to fitting 
them into the lower-order models. 

III. DESIGN OF IMC-PID CONTROLLER 

A. IMC-PID Approach for PID Controller Design 

The multivariable Smith predictor is designed based on the 
multiple single-loop Smith predictor control designs. Let the 
primary controller be: 

 

   1 2, ,c c cnii
C C diag g g g     (9) 

 
The diagonal element cii is designed with respect to the 

delay free part qii0 of qii such that closed-loop system formed 
by cii(s) and qii0 has the desired performance. 
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Fig. 3 Block diagram of feedback control strategies: (a) Classical 
feedback control (b) Internal model control 

 
The PID controller can be designed based on the IMC 

approach as shown in Fig. 3 for the free delay process, where 

PG PG , DG , cG , q, and fR denote the transfer functions of 

process, process model, disturbance, feedback controller, IMC 
controller, and set-point filter, respectively. Since r, d, and y 
correspond to the set-point input, the disturbance input, and 
the controlled variable. According to the IMC control 
structure, the controlled variable is related to the set-point as: 
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For the nominal case (i.e., P PG G  ), the set-point and 

disturbance rejection responses are simplified to: 
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In the classical feedback control structure, the set-point and 

disturbance responses are represented by:  
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According to the IMC parameterization [13], the process 

model 
PG is decomposed into two parts:  

  

P M AG =P P   (15)  
 

where MP  and 
AP  are the portions of the model inverted and 

not inverted by the controller, respectively. It is noted that 

AP is usually a non-minimum phase and contains time delay 

term and/or right-half-plane zero. Then, the IMC controller 
can be described as: 
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The numerator m i
i=1 iα s 1   causes an excessive overshoot 

in the servo response, which can be eliminated by introducing 
a set-point filter to compensate the overshoot in the servo 
response. 

Substituting (15) and (16) into (10), yields 
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Therefore, the ideal feedback controller for achieving the 
desired loop response can be easily obtained by 
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The resulting controller given by (18) does not have the 

standard PID-type controller form despite that it is physically 
realizable. Consequently, it is necessary to convert it into the 
suitable PID-type controller form more closely by using the 
clever approximation techniques. In this paper, a Maclaurin 
approximation is utilized in the different manner with previous 
design methods in terms of the most closely PID controller 
approximates the ideal feedback controller. 

B. IMC-PID Tuning Rules for Typical Process without Time 
Delay Models 

The most commonly used approximate model for chemical 
processes is the FOP model given as: 
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where K and τ denote the process gain and the time constant, 
respectively. The optimum IMC filter structure in this case is 
found as: 
 

 

 2

1f
1

s

s







 (20) 

 
Hence, the ideal feedback controller is obtained by: 
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The value of α is evaluated as: 
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The analytical tuning rules of the PID controller can be 

obtained by:  
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For the other process models, one can be easily applied the 

similar above-mentioned procedure. 

IV. SIMULATION STUDY 

In order to have a fair comparison, the IAE criterion is 
considered here for the set-point tracking.  
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To evaluate the magnitude of the manipulated input usage, 

the total up and down movement of the control signal is 
considered as: 
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TV is a good measure of the smoothness of controller 

output and should be small [14]. 
The robustness of a control system is one of the most 

important issues in any controller design, because the 
dynamics of real plants usually have many sources of 
uncertainty, which cause poor performance or even instability 
in the control systems. In this study, a well-known method for 
robust stability [14] is introduced for a fair comparison with 
other existing controller design methods.  

The robust stability can be examined under output 
multiplication uncertainty. For a multi-delay process with an 

output multiplicative uncertainty of 0 , the upper bound of 

the robust stability can be written as 
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where ( ) ( )cj j G G  is invertible. 

To insure a fair comparison, the degree of robust stability 
will be held at the same level for all of the design methods 
being compared. In the simulation study, the proposed multi-
loop PI controller is tuned by adjusting the closed-loop time 
constant, i , so that the   value of the proposed control 

system is kept the same as or larger than those of the other 
methods. 

In this section, a pilot-scale distillation column consisting of 
an eight-tray plus re-boiler that introduced by Wood and Berry 
(WB) [15] is considered for the separation of methanol and 
water. The open-loop transfer function matrix is given by: 
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The ideal decoupler network is designed based on (8): 
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TABLE I 

CONTROLLER PARAMETERS FOR THE WB COLUMN 

Tuning method Loop ciK  Ii  i  

Proposed 1 0.440 8.50 5 

 2 -0.072 14.00 12 

SAT [16] 1 0.87 3.25 - 

 2 -0.09 10.40 - 

Lee et al.[17] 1 0.24 8.36 4.55 

 2 -0.10 7.46 4.55 

Ho et al. [18] 1 0.57 20.70 - 

 2 -0.11 12.88 - 

 
TABLE II 

RESULTING PERFORMANCE INDICES FOR THE WB COLUMN 

Tuning 
method 

Set-point Disturbance   
IAE TV IAE TV 

Proposed 3.153 3.95 100.00 10.75 0.47 

SAT [16] 24.60 4.24 136.46 11.58 0.33 

Lee et al.[17] 25.87 1.17 165.75 7.75 0.47 

Ho et al. [18] 29.74 2.12 188.42 8.12 0.47 

 

The decoupled process in the ideal decoupling system can 
be obtained by: 

 

11 11
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Considering (22)-(25), the controller parameters of PID 

controller can be calculated and listed in Table I. The WB 
column in (29) is one of the most representative TITO process 
models widely used for evaluating the performance of the 
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multi-loop controllers. The performance of the proposed 
method was compared with those by the existing design 
methods such as the sequential auto-tuning (SAT) [16], Lee et 
al. [17], and Ho et al. [18] methods.  

In order to ensure a fair comparison, the robust stability is 
examined for all of the comparative design methods by using 
(28). The proposed controller was tuned to have 0.47   so 

that the robust level is the same as those of Lee et al. [17] and 
Ho et al. [18], and higher than that of SAT [16]. The 
sequential unit step changes in the set-point were made to the 
1st and 2nd loops, respectively. The sequential unit step 
changes in the disturbance were also made to the 1st and 2nd 
loops, respectively. For the design of the proposed controller, 
the order of the IMC filter was set to 1 for all of the loops. 

The resulting performance indices are listed in Table II. The 
closed-loop responses to the set-point and disturbance changes 
are shown in Fig. 4, respectively. 

It is apparent from the table and figures that the proposed 
controller provides the superior performance for both the set-
point tracking and disturbance rejection.  

 

 

 

Fig. 4 Closed-loop responses to the unit step changes in the set-point 
for the WB column 

V.  CONCLUSION 

In this paper, an analytical design method of IMC-PID 
controller for multivariable Smith predictor. The ideal 
decoupler network can be successfully applied to decompose 
the complex multivariable Smith predictor control systems 
into an n number of simple equivalent Smith predictor for the 
SI/SO systems, which the dynamic interaction is involved 
systematically. The controller can be designed simply as the 
PI/PID controllers for the free-delay process models of each 
diagonal element of multivariable process. Therefore, the 

proposed method is straightforward and easy to implement in 
the multivariable control systems. The robustness and 
performance can be efficiently compromised by adjusting a 
single parameter, i.e., the closed-loop time constant. For a fair 
comparison, the maximum upper bound in the output 
multiplicative uncertainty for the robust stability was utilized. 
The time-domain simulation demonstrates the superior 
performance of the proposed controller with a fast and well-
balanced closed-loop time response for both the set-point and 
load changes.  
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