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Abstract—Hepatitis is one of the most common and dangerous 

diseases that affects humankind, and exposes millions of people to 
serious health risks every year. Diagnosis of Hepatitis has always 
been a challenge for physicians. This paper presents an effective 
method for diagnosis of hepatitis based on interval Type-II fuzzy. 
This proposed system includes three steps: pre-processing (feature 
selection), Type-I and Type-II fuzzy classification, and system 
evaluation. KNN-FD feature selection is used as the preprocessing 
step in order to exclude irrelevant features and to improve 
classification performance and efficiency in generating the 
classification model. In the fuzzy classification step, an “indirect 
approach” is used for fuzzy system modeling by implementing the 
exponential compactness and separation index for determining the 
number of rules in the fuzzy clustering approach. Therefore, we first 
proposed a Type-I fuzzy system that had an accuracy of 
approximately 90.9%. In the proposed system, the process of 
diagnosis faces vagueness and uncertainty in the final decision. Thus, 
the imprecise knowledge was managed by using interval Type-II 
fuzzy logic. The results that were obtained show that interval Type-II 
fuzzy has the ability to diagnose hepatitis with an average accuracy 
of 93.94%. The classification accuracy obtained is the highest one 
reached thus far. The aforementioned rate of accuracy demonstrates 
that the Type-II fuzzy system has a better performance in comparison 
to Type-I and indicates a higher capability of Type-II fuzzy system 
for modeling uncertainty.  

 
Keywords—Hepatitis disease, medical diagnosis, type-I fuzzy 

logic, type-II fuzzy logic, feature selection. 

I. INTRODUCTION 

A. Hepatitis Diseases 

EPATITIS is a viral infection that was also transmitted 
by blood or blood products in the past when there was no 

test available screening this infection. Hepatitis occurs due to 
one of these three viruses [1]; hepatitis A, hepatitis B, and 
hepatitis C. Moreover, the Epstein Barr Virus can transform 
into hepatitis which leads to inflammation of the liver. In 
addition, there are some viruses and bacteria that produce 
hepatitis D and E, varicella (chickenpox), and 
cytomegalovirus (CMV). The most important types of 
hepatitis, which are hepatitis A, hepatitis B, and hepatitis C, 
can be explained as given below [2]: 
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Hepatitis A is the most common form of hepatitis in 
children. It is known as “infectious hepatitis” and caused by 
the hepatitis A virus (HAV). This virus lives in the stools 
(feces or poop) of infected individuals. 

Hepatitis B is known as “serum hepatitis”. It arises because 
of the hepatitis B virus (HBV). This virus is diffused from 
infected body fluids, such as blood, saliva, semen, vaginal 
fluids, tears, and urine, contaminated blood transfusion, shared 
contaminated needles or syringes for injecting drugs, sexual 
activity with an HBV-infected person, and transmission from 
HBV-infected mothers to their newborn babies. 

Hepatitis C occurs because of the hepatitis C virus (HCV). 
It spreads by direct contact with an infected person’s blood. 
Hepatitis C causes chronic liver disease and liver 
transplantation, and is becoming an increasing cause of 
concern in the world. The symptoms of this hepatitis type are 
similar to those of hepatitis A and B. The hepatitis C virus is 
diffused by sharing drug needles, getting a tattoo or body 
piercing with unsterilized tools, blood transfusions (especially 
ones that occurred before 1992; since then the US blood 
supply has been routinely screened for the disease), 
transmission from mother to newborn, and sexual intercourse. 

The signs and symptoms of hepatitis are malaise (a general 
ill feeling), fever, muscle aches, loss of appetite, nausea, 
vomiting, diarrhea, and jaundice (the yellowing of the skin and 
whites of the eyes). All A, B and C viral hepatitis conditions 
can be diagnosed and followed through the use of readily 
available blood tests [3]. A physician commonly takes 
decisions by evaluating the current test results of a patient, or 
compares the patient with other patients under the same 
condition by referring to the previous results and decisions. 
Therefore, it is very difficult for a physician to diagnose 
hepatitis. 

B. Fuzzy Logic System 

Fuzzy set theory was first introduced by Zadeh in 1965 [4]. 
The fuzzy logic systems (FLSs) are well known for their 
ability to model linguistics and system uncertainties. Due to 
this ability, FLSs have been successfully used for many real-
world applications, including modeling and controlling. Type-
1 FLSs (T1 FLSs) are the best known and widely used types 
of FLS. 

The concept of a Type-II fuzzy set was first introduced by 
Zadeh as an extension of Type-I fuzzy set [5]. A Type-I fuzzy 
set is characterized by the fuzzy membership function, i.e., the 
membership grade for each element is a fuzzy set in an 
interval [0], [1].Such sets can be used in situations where there 
are uncertainties about the membership values. As more 
complex models, T2 FSs are considered to be potentially 
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Since the general Type-II fuzzy logic systems are 
computationally very demanding, the use of interval Type-II 
fuzzy logic systems is more commonly seen in the literature, 
due to the fact that the computations are more manageable 
[10]. 

When all μ x, u  are equal to 1, then 		A			is an interval 
Type-II fuzzy logic systems. The special case of “(2)” might 
be defined for the interval Type-II fuzzy logic systems:  

 

1 ,⁄ 				
	
∈

	
∈ 									 ⊆ 0,1                 (3) 

 
The upper membership function (UMF) and lower 

membership function (LMF) of 	  are two T1 MFs that bound 
the FOU. The UMF is associated with the upper bound of 
FOU ( ) and is denoted μ 		∀ ∈ , and the LMF is 
associated with the lower bound of FOU( ) and is denoted 
μ 		∀ ∈  [10]: 

 

≡ 												∀ ∈
≡ 												∀ ∈

                           (4) 

 
It should be noted that Type-II fuzzy sets can model and 

minimize the effects of uncertainties in rule-based fuzzy logic 
systems. The effects of uncertainties can be minimized by 
optimizing the parameters of the Type-II fuzzy sets during a 
training process. The purpose of this study is to demonstrate 
the higher ability of Type-II fuzzy systems to modeling 
uncertainty. The paper is organized as follows: In Section II, 
previous works for diagnosis of hepatitis diseases in literature 
is presented. In Section III, the used hepatitis database is 
explained. In Section IV, the feature number of hepatitis 
disease dataset is reduced from 19 to 10. In Section V, the 
proposed Type-I fuzzy system modeling is presented. In 
section VI, some reasons for using Type-II fuzzy system, 
instead of the Type-I fuzzy system, are presented. In section 
VII, the proposed Type-II fuzzy system modeling is explained. 
Finally, in Section VIII, the discussion and conclusion are 
presented. 

II. LITERATURE REVIEW 

Up to now, many studies have been performed in the 
diagnosis of hepatitis literature. In some cases, articles 
attempted to increase the classification accuracy. Although 
classification accuracy is an important feature of a system, this 
study focuses on generated fuzzy-rules and the values of 
membership function’s parameters. Table I presents the 
classification accuracy of previous hepatitis diagnosis methods 
[11]. 

III. HEPATITIS DISEASE DATASET 

In this study, the hepatitis database obtained from the UCI 
repository of machine learning databases is used [12]. This 
hepatitis disease dataset requires determination of whether the 
patients having hepatitis will either live or die. The purpose of 
the dataset is to predict the presence or absence of the hepatitis 

disease given the results of various medical tests carried out 
on a patient. This database contains 19 attributes, which have 
been extracted from a larger set of 155. The hepatitis dataset 
contains 155 samples belonging to two different classes (32 
“die” cases, 123 “live” cases). There are 19 attributes, 13 
binary attributes and six with 6–8 discrete values. The 
attributes of Hepatitis dataset are given in Table II. 

IV. FEATURE SELECTION 

The number of features (attributes) and instances in the raw 
dataset can be enormously large. This enormity may cause 
serious problems to many data mining systems. Feature 
selection is one of the oldest existing methods that deals with 
these problems. Its objective is to select a minimal subset of 
features according to some reasonable criteria so that the 
original task can be equally achieved well, if it was not better. 
By choosing a minimal subset of features, irrelevant and 
redundant features are removed according to the criterion. 
Simpler data can lead to more concise results and their better 
comprehensibility [1]. 

 
TABLE I 

CLASSIFICATION ACCURACIES OBTAINED BY OTHER METHODS IN 

LITERATURE [11] 

Author Method Accuracy (%)

“Grudzinski et al [19]” Weighted 9NN 92.9 

“Grudzinski et al [20]” 18NN, stand. Manhattan 90.2 

“Grudzinski et al [20]” 15NN, stand. Euclidean 89.0 

“Adamczak et al [21]” FSM with rotations 89.7 

“Adamczak et al [21]” FSM without rotations 88.5 

“Adamczak et al [21]” RBF (Tooldiag) 79.0 

“Adamczak et al [22]” MLP+BP (Tooldiag) 77.4 

“Šter and Dobnikar [23]” LDA 86.4 

“Šter and Dobnikar [23]” Naive Bayes and semi-NB 86.3 

“Šter and Dobnikar [23]” QDA 85.8 

“Šter and Dobnikar [23]” 1NN 85.3 

“Šter and Dobnikar [23]” ASR 85.0 

“Šter and Dobnikar [23]” FDA 84.5 

“Šter and Dobnikar [23]” LVQ 83.2 

“Šter and Dobnikar [23]” CART (decision tree) 82.7 

“Šter and Dobnikar [23]” MLP with BP 82.1 

“Šter and Dobnikar [23]” ASI 82.0 

“Šter and Dobnikar [23]” LFC 81.9 

“Norbert Jankowski [24]” Inc Net 86.0 

“Özyıldırım et al [25]” MLP 74.37 

“Özyıldırım et al [26]” RBF 83.75 

“Özyıldırım et al [26]” GRNN 80.0 

“Polat and Gunes [1]” FS-AIRS with fuzzy res. 92.59 

 
Present research used the k-nearest neighborhood functional 

dependency (KNN-FD) approach proposed by [13]. This 
feature selection algorithm combines feature wrapper and 
feature filter approaches in order to identify the significant 
input variables in systems with continuous domains. This 
method utilizes functional dependency concept, correlation 
coefficients and K-nearest neighborhood (KNN) method to 
implement the feature filter and feature wrappers. Four feature 
selection methods independently select the significant input 
variables and the input variable combination, which yields the 
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best result respective to their corresponding evaluation 
function and selected as the winner [13]. This method was 
used and the most important variables between the possible 
candidates was selected.  

 
TABLE II 

THE ATTRIBUTES OF HEPATITIS DISEASE DATABASE 
The number of 

attribute 
The name of 

attribute 
The values of attribute 

1 Age 10, 20, 30, 40, 50, 60, 70, 80 

2 Sex Male, female 

3 Steroid Yes, No 

4 Antivirals Yes, No 

5 Fatigue Yes, No 

6 Malaise Yes, No 

7 Anorexia Yes, No 

8 Liver big Yes, No 

9 Liver firm Yes, No 

10 Spleen palpable Yes, No 

11 Spiders Yes, No 

12 Ascites Yes, No 

13 Varices Yes, No 

14 Bilirubin 0.39, 0.8, 1.2, 2.0, 3.0, 4.0 

15 Alk phosphate 33, 80, 120, 160, 200, 250 

16 SGOT 13, 100, 200, 300, 400, 500 

17 ALBUMIN 2.1, 3.0, 3.8, 4.5, 5.0, 6.0 

18 PROTIME 10, 20, 30, 40, 50, 60, 70, 80, 90 

19 HISTOLOGY Yes, No 

 
Based on the results of this feature selection method, the 

number of features was reduced to 10 by removing age, sex, 
antivirals, anorexia, liver big, spleen palpable, bilirubin, 
protime, histology values and we used the other features in our 
proposed system. 

V. TYPE-I FUZZY SYSTEM MODELING 

A. Determining the Number of Rules 

In a fuzzy clustering algorithm, we should use a cluster 
validity index to determine the most suitable number of 
clusters. In this study, we used the validity index proposed by 

Fazel Zarandi et al. [14]. This validity index		  (an 
Exponential compactness and separation index) can find the 
number of clusters as the maximum of its function with 
respect to c. This index is defined as [14]: 
 

           (5) 

 
where		 	and  are Exponential compactness 
and Exponential separation measures respectively, and are 
defined as: 
 

∑ 	∑ 	    (6) 

 

∑ min
‖ ‖

										        (7) 

 

in which, 

‖ ̅‖
1

 

 
and  

∑ ‖ ̅‖1 ⁄  with ̅ ∑ 1 ⁄ . 
 

This cluster validity index is implemented to determine the 
most suitable number of clusters or rules. The best number of 
clusters based on this cluster validity index is obtained in three 
clusters. So, the Type-I system contains three rules. 

B. The Proposed Type-I Fuzzy Model 

The determination of fuzzy rules from data is an important 
issue for solving tasks like building fuzzy controllers, fuzzy 
classifiers, or supporting decision-making processes. 

For many application problems, classifiers can be used to 
support a decision-making process. In some areas like 
medical, it is not preferable to use black box approaches. The 
user should be able to understand the classifier and to evaluate 
its results. Fuzzy rule-based classifiers are especially suitable 
because they consist of simple linguistically interpretable rules 
and do not have some drawbacks of symbolic or crisp rule-
based classifiers. Classifiers must often be created from data 
by a learning process because there is not enough expert 
knowledge to determine their parameters completely [15]. 

In the Type-1 fuzzy model, we obtain its model with three 
rules, ten inputs, and one output. The inputs are steroid, 
fatigue, malaise, liver firm, spiders, ascites, varices, Alk- 
phosphate, SGOT and albumin. We use Mamdani-style 
inference, min–max operators and centroid defuzzification 
methods. In the proposed model, Gaussian membership 
function was used for fuzzy sets description. The rule-based of 
the proposed system consists of three general rules. The rules 
of the proposed system are as follows: 
1. If (STEROID is in1cluster1) and (FATIGUE is 

in2cluster1) and (MALAISE is in3cluster1) and 
(LIVER_FIRM is in4cluster1) and (SPIDERS is 
in5cluster1) and (ASCITES is in6cluster1) and 
(VARICES is in7cluster1) and (ALK_PHOSPHATE is 
in8cluster1) and (SGOT is in9cluster1) and (ALBUMIN 
is in10cluster1) then (output is out1cluster1)  

2. If (STEROID is in1cluster2) and (FATIGUE is 
in2cluster2) and (MALAISE is in3cluster2) and 
(LIVER_FIRM is in4cluster2) and (SPIDERS is 
in5cluster2) and (ASCITES is in6cluster2) and 
(VARICES is in7cluster2) and (ALK_PHOSPHATE is 
in8cluster2) and (SGOT is in9cluster2) and (ALBUMIN 
is in10cluster2) then (output is out1cluster2)  

3. If (STEROID is in1cluster3) and (FATIGUE is 
in2cluster3) and (MALAISE is in3cluster3) and 
(LIVER_FIRM is in4cluster3) and (SPIDERS is 
in5cluster3) and (ASCITES is in6cluster3) and 
(VARICES is in7cluster3) and (ALK_PHOSPHATE is 
in8cluster3) and (SGOT is in9cluster3) and (ALBUMIN 
is in10cluster3) then (output is out1cluster3) 

For a better view of the rule-based, Fig. 3 represents the 
fuzzy rules of the proposed system. 
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