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 
Abstract—Most of the building materials are considered porous, 

and composed of solid matrix and pores. In the pores, the moisture 
can be existed in two phases: liquid and vapor. Thus, the mass 
balance equation is comprised of various moisture driving potentials 
that translate the movement of the different existing phases 
occupying pores and the hygroscopic behavior of a porous 
construction material. This study suggests to resolve a hygrothermal 
mathematical model of heat and mass transfers in different porous 
building materials by a numerical investigation. Thereby, the 
evolution of temperature and moisture content fields has been 
processed. So, numerous series of hygrothermal calculation on 
several cases of wall are exposed. Firstly, a case of monolayer wall of 
massive wood has been treated. In this part, we have compared the 
numerical solution of the model on one and two dimensions and the 
effect of dimensional space has been evaluated. In the second case, 
three building materials (concrete, wood fiberboard and wooden 
insulation) are tested separately with the same boundary conditions 
and their hygrothermal behavior are compared. The evaluation of the 
exchange of heat and air at the interface between the wall and the 
interior ambiance is carried. 
 

Keywords—Building materials, heat transfer, moisture diffusion, 
numerical solution. 

I. INTRODUCTION 

HE study of coupled heat and mass transfers in porous 
media is a process which occurs frequently in many 

engineering applications, such as oil extraction [1], textile 
materials [2], wood drying [3], granular materials [4], 
transport in composite membrane [5], capillary-porous bodies 
[6] and building materials [7]. The resolution of this type of 
models can be carried out by different investigations. Chang et 
al. [8] have resolved a coupled model of heat and moisture 
transfers by an analytical approach. Some other authors used 
numerical solutions [9], [10]. The typical heat and mass 

transfer model is governed by Luikov equations [12], which 
takes into account the terms of mass, air and the total pressure 
gradient. 

At the scale of building, three modes of transfer are 
combined. In this context, several researches have been 
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devoted to study the mode of coupled heat and moisture 
transfer [13], [14]. Many models have taken account of the 
term moisture content from water [15], [16], where the 
presence of water vapor is neglected. Thomann et al. [17] have 
considered the diffusion of water vapor but the portion of 
liquid water was negligible. Thus, a first study which 
described the evolution of moisture in building materials has 
been processed by the Glaser-method [18]. After that, Mendes 
et al. [19] studied the capacity of porous hygroscopic materials 
to dampen the indoor humidity variations through moisture 
exchange [20]. Bio-based materials, which have recently 
appeared as a serious candidates in the search of sustainable 
and energy-efficient materials, have typically a high buffer 
performance [21], [22]. However, in building materials, heat 
and moisture models needed to be increased the accuracy of 
heat and moisture transfer calculation between outdoor and 
indoor environments in order to create a better inside thermal 
comfort. 

In this study, we presented a numerical investigation for a 
model predicted heat transfer, air transport and moisture 
diffusion in porous building materials. The resolution has been 
carried by the finite element method. The study suggests 
different categories of building materials (concrete, wood 
fiberboard and wooden insulation). Input parameters are 
evaluated experimentally using continuous driving potentials 
and considerable constants for all the tests discussed. The 
object is to evaluate the hygrothermal behavior of these 
different materials, which are submitted to the same boundary 
conditions. Initially, the temperature and relative humidity of 
the wall are at 20 °C and 50% respectively.  

II. PROBLEM FORMULATION 

A. Description of Physical Problem 

A typical model of heat and moisture transfers in porous 
building materials is presented. Initially, a wood slab material 
is submitted at uniform temperature and moisture content. The 
boundaries are in contact with the hot surrounding gas, thus 
resulting in a convection boundary condition for both the 
temperature and moisture potential as shown in Fig. 1. 

Physical phenomena coupled heat and moisture transfers 
are the result of the simultaneous transport of gas and liquid 
phases in porous medium. They are expressed by 
combinations of the phenomenological laws of Darcy and Fick 
[11]. The heat flow results in a variation of the gradient of 
temperature and moisture transfers. It is done via the gas phase 
containing air and water vapor. Molecular diffusion reflected 
the movement of the water vapor which appears in moist air 
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