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      
Abstract—Flow instability during gas lift operation is caused by 

three major phenomena – the density wave oscillation, the casing 
heading pressure and the flow perturbation within the two-phase flow 
region. This paper focuses on the causes and the effect of flow 
instability during gas lift operation and suggests ways to control it in 
order to maximise productivity during gas lift operations. A 
laboratory-scale two-phase flow system to study the effects of flow 
perturbation was designed and built. The apparatus is comprised of a 
2 m long by 66 mm ID transparent PVC pipe with air injection point 
situated at 0.1 m above the base of the pipe. This is the point where 
stabilised bubbles were visibly clear after injection. Air is injected 
into the water filled transparent pipe at different flow rates and 
pressures. The behavior of the different sizes of the bubbles 
generated within the two-phase region was captured using a digital 
camera and the images were analysed using the advanced image 
processing package. It was observed that the average maximum 
bubbles sizes increased with the increase in the length of the vertical 
pipe column from 29.72 to 47 mm. The increase in air injection 
pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm 
to 44.17 mm and then decreasing when the pressure reaches 4 bars. It 
was observed that at higher bubble velocity of 6.7 m/s, larger 
diameter bubbles coalesce and burst due to high agitation and 
collision with each other. This collapse of the bubbles causes 
pressure drop and reverse flow within two phase flow and is the main 
cause of the flow instability phenomena.  

 
Keywords—Gas lift instability, bubble forming, bubble 

collapsing, image processing.  

I. INTRODUCTION 

HE petroleum industry has long needed to understand the 
challenges of two-phase flow behaviours in production 

tubing in gas lifted wells under different operating conditions 
(port size, flow rate and injection pressure) and their 
macroscopic flow instability. This type of instability which is 
known as systematic instability involves the entire two phase 
flow system and is dependent on the boundary conditions. 

The systematic flow instability can cause serious flow 
oscillations that require feedback control systems to reduce 
these flow oscillations. However, these are only partially 
effective to control these fluctuations. They also increase the 
backpressure on gas lift systems and this leads to reduce oil 
production rate. Flow perturbations and density wave type 
oscillations which occur inside production tubing string are 
related to the kinematic wave propagation phenomenon of 
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fluid. These are the main cause of flow instability in 
production tubing and should not be neglected. This happens 
when fluids with different densities flow together and create 
very abnormal fluid behaviors that cause turbulence in the 
system [1].  

Two-phase flow has different patterns. For example, in 
vertical pipes one of the following flow regimes will be 
present: Bubbly flow, dispersed flow, annular flow or slug to 
churn flow [2]. Multiphase flow, in the petroleum industry, 
has many applications and complications across the entire 
production system; therefore, engineers face with the necessity 
to solve and predict flow instability phenomenon by 
determining the relationships between flow rates, pressure 
drop and pipe geometry (pipe length, diameter and angle) [3]. 

The prediction of the overall pressure gradient and pressure 
profiles for multiphase flow in vertical columns has been 
developed. However, the effect of casing pressure was 
neglected [4], [5]. Multi-phase flow patterns and the 
transitional flow regions during hydrodynamic conditions 
were investigated using physical model. Hasan and Kabir 
reported that the difference between flow patterns depended 
on the depth in the vertical well, which near the bottom hole 
may only have one phase. Moreover, as fluid flows upward in 
the vertical pipe, its pressure decreases gradually until it 
reaches a point that is less than bubble point pressure. When 
gas starts to vaporize from the fluid mixture it causes the 
following flow patterns to develop: Bubbly flow, slug flow, 
churn flow and annular flow [6]. 

Several experimental works were carried out to investigate 
flow pattern transitions of two phase flow in a vertical pipe 
using conductance probes, wire mesh sensor and high speed 
camera for observations [7]-[9]. Results indicated that void 
fraction data and flow patterns information gave good 
agreements with developed flow models. Even though their 
research data gave consistent agreement with developed 
models; their investigations did not mention that the bubble 
break and coalesce process in these transitional regions are the 
main cause of the disturbance wave. The periodic structure of 
two phase flow investigated in vertical column with different 
pipe diameters (0.5 mm – 70 mm) with ring-type conductance 
probes were used to obtain film thickness, pressure gradient 
and frequency. It is indicated that as pipe diameter increases 
some flow transitional regions disappeared [9]. According to 
Bertuzzi, the performance of the gas lift system can be 
improved by reducing tubing size and regulated injection 
pressure but this is depending on the productivity index of the 
reservoir (PI) and hydrostatic fluid level in the tubing string 
even if there is not packer between casing and tubing [10]. 
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throughout the column with smaller diameter nozzle. 
Therefore, increasing port size has destabilizing effect because 
it increases bubble sizes and also leads instability on two 
phase flow. 
 

 

Fig. 13 Effect of port sizes on maximum equivalent bubble diameters 
at constant injection pressure 1 bar and liquid flow rate 5 l/min 

(standard deviation 3.4) 
 

 

Fig. 14 Effect Average maximum bubble sizes on outlet flow rate at 
constant liquid flow rate 5 l/min and different injection pressure 

(standard deviation 0.97) 

E. Effect of Average Maximum Bubble Sizes Outlet Flow 
Rate (Production Rate) at Constant Inlet Liquid Flow Rate 5 
l/min 

Fig. 14 shows relationship between average bubble sizes 
and outlet flow rate in the vertical column. The effect of stable 
average bubble sizes on outlet flow rate is very clear. The 
results showed that stable bubble sizes increases as outlet flow 
rate increases (production rate). This increase in the bubble 
sizes is recommended to certain extent and must not reach to 
critical maximum bubble sizes where bubbles start collapsing 
and causing flow instability. This is because the bubble sizes 
can change the flow pattern and radial distribution of bubbles 
in the column. In addition, maintaining small bubble sizes can 
enhance the efficiency of the gas-lift method. Furthermore, the 
initial bubble size significantly affected the flow pattern 
transition from bubbly flow to slug flow. This effect was clear 
from making the relationship between bubble size dependent 
and critical void fraction, especially in the transitional region 

from bubbly flow to slug flow. Therefore, decreasing bubble 
size can shift larger values of the void fraction in the 
transitional regions and stabilize the gas lifted system.  

IV. CONCLUSION 

The flow structure and behaviours of two phase flow have 
been investigated experimentally in a vertical transparent pipe 
(ID: 66 mm, Length: 2 m) using image processing package 
(Dynamic studio 2015a). The following concluding remarks 
are derived from this study:  
 Bubbly and slug flow patterns were observed in the test 

section, the axial distribution of bubbles at different 
operating conditions showed very interesting observations 
about air bubbles’ coalescence and collision mechanisms 
statically and dynamically. 

 It has been found that bubble sizes had a significant effect 
on the stability of the axial structure of two phase flow, 
especially when bubbles reached a critical size 
(maturation) and then collapsed. This behaviour causes 
small pressure drop and vacuum and back flow in that 
particular region of collapsed bubbles which lead to 
collision with some bubbles nearby. Furthermore, this 
collision causes disturbances and small waves within the 
system. This process will be repeated simultaneously 
depending on velocities of bubbles flowing upward in the 
pipe. 

 The velocity of air bubbles had considerable impact on 
fluctuations, structure and development of two phase 
flow. It has been noticed that bubbles under the same 
operating conditions have different velocities depending 
on their sizes. Therefore as air bubble velocity increases 
the bubble sizes increases. 

 The velocity and flowrate of liquid phase has positive and 
stabilizing effect on stability of two phase flow. Because 
it reduces the bubble sizes and acting like reservoir 
respond (productivity index) to the well bore when it is 
increases.   

 Injection pressure has two effects on bubble sizes, at low 
pressure increases the bubble sizes but at high pressure it 
has negative effect on bubble size and stabilizes the 
column. 

 Port size diameter has great effect on bubble sizes as 
higher breakup frequency was anticipated at smaller 
diameter of the injection point result in lower bubble sizes 
were observed. 
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