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Transient Heat Transfer of a Spiral Fin
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Abstract—In this study, the problem of temperature transient
response of a spiral fin, with its end insulated, is analyzed with base
end subjected to a variation of fluid temperature. The hybrid method
of Laplace transforms/Adomian decomposed method-Padé, is applied
to the temperature transient response of the fin, the result of the
temperature distribution and the heat flux at the base of the spiral fin
are obtained, show a good agreement in the physical phenomenon.

Keywords—Laplace transforms/Adomian decomposed method-
Padé, transient response, heat transfer.

I. INTRODUCTION

HE spiral fins can be widely used in typical industries,

such as generators, power plants, mold injection machines,
turbines, and drills. The problem of heat dissipation in the fins
has been of interest for many engineers and researchers.

The transient response of two-dimensional straight fins and
circular fins, one-dimensional annular fins and the composite
straight fins were presented by Chu et al. [1], [2] using the
Fourier series inverse technique. Mokheimer [3] studied the
performance of annual fins with differential profiles subjected
to variable heat transfer coefficients. Wang et al. [4]
investigated transient response of a spiral fin with its base
subjected to the wvariating heat flux. The temperature
distribution and the heat flux at the base of the fin are were
obtained. Malekzadeh et al. [5] studied the two-dimensional
nonlinear transient heat transfer of variable section pin fins by
using the incremental differential quadrature method (IDQM).
The results agree well with those in the existing literatures.
Recursive formulations on thermal analysis of an annular fin
with variable thermal properties were presented by Yuan Lai et
al. [6].

Adomian decomposition method (ADM) has been
developed to solve many nonlinear and random vibration
problems [7]. Wazwaz proposed a combined ADM and Padé
approximation technique to study different nonlinear systems
[8]. Hsu et al. [9] used the modified Adomian decomposition
method to study the free vibration of non-uniform Euler-
Bernoulli beams with general elastically end constraints. The
method which combined the Adomian decomposition method
and Laplace transform had been proposed to study to the heat
dissipation of a spiral fin [10]. However, the method will
encounter numerical difficulty while taking large number of
terms. In this paper, a hybrid method which combined the
Adomian decomposition method, Laplace transform and the

Sen-Yung Lee is with the Mechanical Engineering Department, National
Cheng Kung University, Tainan, Taiwan, Republic of China (phone:
+886-6-2757575 ext.62150; e-mail: sylee@mail.ncku.edu.tw).

Li-Kuo Chou and Chao-Kuang Chen are with the Mechanical Engineering
Department, National Cheng Kung University, Tainan, Taiwan, Republic of
China (e-mail: n18981131@mail.ncku.edu.tw, ckchen@mail.ncku.edu.tw).

Padé approximation technique is employed to overcome the
difficulty. The numerical results are compared with those in
the existing literature.
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Fig. 1 Physical system of a spiral fin

II. MATHEMATICAL MODEL

Consider a spiral fin of uniform thickness 28 as shown in
Fig. 1. It is assumed that one-dimensional theory is valid in the
present analysis. At the inner edge, r=r;, the spiral fin
dissipates heat by convection to the environment with
convective heat transfer coefficient h. The thermal resistance
and capacity of the material in the inner wall of the tube is
assumed to be negligible. At the outer edge, r=r,, the fin is
assumed to be perfectly insulated. The surrounding
temperature is To.. The initial temperature of the fin is Tr.

Outer radius r», pitch P and thermal conductivity k is shown
as Fig. 1. The end of the fin, i.e., r=r, is assumed to be
perfectly insulated is valid. Initial, the fin is in thermal
equilibrium with the surrounding fluid temperature T... At time
t=0, the base temperature is suddenly raised to T or subjected
to heat flux go" and from then on, the spiral fin dissipated heat
by convection to the environment through a convective heat
transfer coefficient h, hs and the properties k, p, ¢ of the
material of the fin are all assumed to be constant. At the other
boundary condition, i.e., at r=r; the convective boundary by
ignoring the thermal resistance and capacity of the material in
inner wall tube is assumed.

Based on the conservation of energy, the governing
differential equation of the temperature of the spiral fin can be
derived as [4]:
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where T is the temperature field, r is the radius, P is the pitch
and k is the heat conduction coefficient of the spiral fin. p and
¢ is the mass density and the heat capacity of the fin,
respectively. o=k/pc is the thermal diffusivity. The Biot
number is Bi=hri/ki and o=k/pc is the thermal diffusivity. hy is
base convective heat transfer coefficient, ki is thermal
conductivity of fluid for the fin base and r; is the inner radius
of the fin.
After introducing the non-dimensional variables,

§=L’N=h7rlz’9=T_Tw’ % P = P ,R=L2 2
T, ks T, -T Pt 2m I

The dimensionless governing equation is:

200, . [p2ie29- [p2 255’
ag,{ P JR2+&20=[R2 1 ¢ o
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The dimensionless initial and boundary:

0(£,0)=0, 1<¢£<R 4)
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= (6)
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where B; is the Biot number (Bi=hiri/ks). Taking the Laplace
transformation with respect to 7z for (2), (4)-(6), we have the
differential equation:

{\/

Define:

} NyP?+&20 =[PP + 205, @)

Lo, )= [ 6&. e "dr = (&)

and the boundary conditions of (5) and (6) can be express as:

0 pp-B ®
o0& S
00
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2e Re9)=0.

[I1. FIN TEMPERATURE DISTRIBUTION

The dimensionless energy equation (7) can be simplified as:

0 _gong. £ 90 (10)

e P 4+ dE”

The linear operator in the Adomain decomposition analysis
is defined as:

2
L. :dd? (1)

Consequently, (10) becomes:

L5=§=§S+N§—%d—9, (12)
’ Ri+&"ds

Operating on both sides of (12) with the inverse the
operator L', we can obtain:

P R . de”
G=0 +8"(E-1)+ L@ s)+(NT) - —=— 994 (13)
+OE D L@ + (NG )~ o T
where, 8" =0(l,s).
From the boundary condition of (9), we can get the
valueg"'= B,# - B, /s, and (13) become to:

- —x i 1 _ —x —x § dg
B=0" + BB —(E-)+ L@ 5 + (N T
The linear terms in (14):
R 0692 (19)
p4 Pi6 p3 plO dé&

Adomian decomposition method is introduced in an infinite
series as:

*=i ©)=0"+B,@ ——)(5 1)+L_.;ZAH<§) (16)
6,(&) was defined as:
@(§)=§"+Bi<§*—§)(¢—1) (17)

0.(5)=LiA©) (18)

The components of @(£) are determined from the

following recursive relationship:
- ok ok 1 —
1 (H)=0" +Bi(0 = )& -D+ LA (), n=12,.. (19

Adomian polynomials A, can be presented as the following
few terms:
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Taking inverse Laplace transformation with respect to s for
(20)-(24), we can express the following recursive relationship
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Define:
L']=46()
by obtaining the components 6n(z), for n = 0,1,2,3,..., the
approximate analytic solution for the four iteration step is
(30)

|
0(0)=Y0,(t)=0,+6,+ 6, + 0, +..+ 6, +...
n=0

Defining the non-dimensional heat flux at the fin base as:

Gy =0y /4k[om 1T, —T,] (€30

After employing the non-dimensional parameters, the heat
flux can be expresses as:

qo*:—,/HZHM, >0

o5

(32

After applying the temperature distribution 0(t) in (30), the
non-dimensional heat flux at the base of spiral fin is given by,
G =[R2 +1 06n+1(1,7) (33)
og

IV. THE LADM-PADE APPROXIMATION

Combining the obtained series solutions by the LADM in
the previous section with the Padé approximation is the main
part of this section. To the end, Then, we apply this process for
obtaining some high accuracy computational results for
problem (7) with boundary conditions (9). Then, we transform
the power series obtained by the Laplace Adomian
Decomposition Method (33) into a rational function as follow:

M /N]:iajgi/ibjgi (34)
i=0 i=0

We know that if N >M then the limit at infinity in the
boundary conditions (8) and (9) has a correct behavior. So the
rational function (34) has M+N-+1 coefficient that we can
select them. If [M/N](7) is exactly a Padé approximation then
0(r)-[M/N](z)=0(EM*N*") . Then, we can obtain the

coefficient ajand bj by the following relations:

i
>'b6, =a;, j=0,...M, (33)
i=0

i
> b6, =0, j=M+1..,M+N,

i=0

(36)

where a;—b,=0 if j>N, From (35) and (36), we can

obtain the values of a(0<i<M) and a;(1< j<N) We

know that if the function 6(z) is bounded i.e. for all >0, we
have O(r)<M and the lim__ 6(r)=0(0) be exist, then

70
0 0(s)=0(0), 0(s)=L(0(r)), the Laplace transform of
the function (7).

Which obtained by the LADM-Padé is shown in Figs. 2-4,
The accuracy of proposed method can be understand from
these plots.

lim

V. RESULTS AND DISCUSSION

The LADM-Padé method provides an analytical solution in
the form of an infinite power series. In study, take the first five
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terms (n = 4) from (30). The temperature distribution of the
spiral fin @ is plotted in Figs. 2-4 for different values of z, Bi,
N, Pi and R.

Figs. 2, 3 and 4 show that the temperature distribution 6
increases as time 7 elapsed. Also, the absolute slope of
temperature distribution & of the spiral fin base has a trend of
decreasing with an increase of time ¢ which implies that the
output heat flux in base of fin will be decreased with an
increase of time 7.

Fig. 2 presents the temperature distribution @ alone the
radius of the spiral fin for the dimensionless variable Pi and 7
at Bi = 1.0, R =2, r and N = 1. Also, due to the increase of
internal temperature of the spiral fin when time 7 is increasing.

1

At the same time, for the greater values Pi of spiral fin.

Fig. 3 presents the temperature distribution 6 alone the
radius of the spiral fin for the dimensionless variable Pi and 7
at Bi = 10, R =2 and N = 1. Also, due to the increase of
internal temperature of the spiral fin when time 7 is increasing.
At the same time, the temperature distribution # is a function
of Bi become of the heat flux at fin base transferred form
convection is larger value of Bi =10.

Fig. 4 presents the temperature distribution € alone the
radius of the spiral fin for the dimensionless variable Pi and 7
at Bi = 10, R = 2 and N = 5. Also, due to the increase of
internal temperature of the spiral fin when time 1 is increasing.
At the same time, for the greater values N = 5 of spiral fin.
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Fig. 4 Temperature distribution for R=2,N =5, Bi=10
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VI. CONCLUSIONS

Many problems are linear in the engineering applications,
and LADM-Padé approximant is a good way quickly to find
the approximate solution. In this study, we apply to the
transient response. Both of a unit step change and a sinusoidal
temperature change are analyzed. The result show that the
temperature variation is affected by the parameters N, Pi, R,
As N becomes large, more heat transform forms the spiral fin
by the temperature distribution also become large. The Pi of a
spiral fin has almost no effect for the temperature distribution.
For the heat flux distribution at the spiral fin base o", the
parameter N and Pi are the important factors, and the
parameter Pi affect the o more as the parameter N increases.
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