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A Qualitative Description of the Dynamics in the
Interactions between Three Populations: Pollinators,
Plants, and Herbivores
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Abstract—In population dynamics the study of both, the
abundance and the spatial distribution of the populations in a
given habitat, is a fundamental issue a From ecological point of
view, the determination of the factors influencing such changes
involves important problems. In this paper a mathematical model to
describe the temporal dynamic and the spatiotemporal dynamic of the
interaction of three populations (pollinators, plants and herbivores) is
presented. The study we present is carried out by stages: 1. The
temporal dynamics and 2. The spatio-temporal dynamics. In turn,
each of these stages is developed by considering three cases which
correspond to the dynamics of each type of interaction. For instance,
for stage 1, we consider three ODE nonlinear systems describing
the pollinator-plant, plant-herbivore and plant-pollinator-herbivore,
interactions, respectively. In each of these systems different types of
dynamical behaviors are reported. Namely, transcritical and pitchfork
bifurcations, existence of a limit cycle, existence of a heteroclinic
orbit, etc. For the spatiotemporal dynamics of the two mathematical
models a novel factor are introduced. This consists in considering
that both, the pollinators and the herbivores, move towards those
places of the habitat where the plant population density is high.
In mathematical terms, this means that the diffusive part of the
pollinators and herbivores equations depend on the plant population
density. The analysis of this part is presented by considering pairs of
populations, i. e., the pollinator-plant and plant-herbivore interactions
and at the end the two mathematical model is presented, these models
consist of two coupled nonlinear partial differential equations of
reaction-diffusion type. These are defined on a rectangular domain
with the homogeneous Neumann boundary conditions. We focused
in the role played by the density dependent diffusion term into
the coexistence of the populations. For both, the temporal and
spatio-temporal dynamics, a several of numerical simulations are
included.

Keywords—Bifurcation, heteroclinic orbits, steady state, traveling
wave.

I. INTRODUCTION

HE objective of this paper is to study the

pollinator-plant-herbivore interaction and to understand
the factors that influence the changes of these populations.
These changes may be observed in the density, distribution,
etc., of the above mentioned populations. Several authors
address this issue by considering the interaction of two or
three populations from different points of view see e.g. [2],
[51, [6], [9]- [12], [14]- [16]. Throughout this paper we
will study this issue based on some mathematical models
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that consist of coupled nonlinear differential equations.
These mathematical models are derived by using some facts
ecologically supported (see [4] and [10]). Such models are
characterized by the interaction terms that are described by a
Holling response of type II. These models have been studied
by several authors, (see [2], [6], [8]- [10], [16]).

The structure of this study will be as follows: In the
second section we are going to study the pollinator-plant
interaction by the means of two models. In first model we
will show the qualitative behavior of the temporal dynamics
of such interaction. The analysis we present here complements
and extends the analysis carried out by other authors (see
[2] and [10]). To study the spatiotemporal dynamics of this
populations, we will present a second model. This model
considers the movement made by the pollinators towards those
places of the habitat where the plant population density is high.
Further in this paper, we will include some results which come
from our numerical simulations.

In the following section we are going to study the
plant-herbivore interaction and will be developed into two
parts. During the first part we will show the qualitative
behavior of temporal dynamic by using a mathematical
model. The novelty of this model lies in the fact that the
authors in [9] consider the plant-herbivore interaction as a
predator-prey interaction types. The second part, for the study
of spatiotemporal dynamics, we present the mathematical
model that considers the basic principle of the movement
executed by the pollinators those places of the habitat where
the plant population density is high, is presented. The results
of the numerical simulations based on the investigation of the
coexistence between both populations show very interesting
results.

In the fourth and last section we will show the results
brought by the qualitative analysis of the temporal dynamics
of interaction made by the three populations by using a
mathematical model. The construction of model can be seen
in [2] and [9]. It is important to realize that despite the fact
that it is difficult to model two populations, to include a third
population its a even more difficult the task. For instance,
the incorporation a third species (predator or other) for avoid
the unlimited growth reflected in the model of mutualistic
populations, may be unrealistic (see [1]). On the other hand,
the idea of incorporating a third population to a mutualistic
model in order to study the effects that may be originated,
could be considered a more realistic perspective, see [2], [15]
and [16]. This is the innovation of the proposed model a fresh
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point of view to avoid staying in a non realistic situation.
Finally, we will present the conclusions of the analysis

focusing on the coexistence of the three populations. In each

section we will give the biological interpretation of the results.

II. THE MATHEMATICAL MODEL OF POLLINATOR-PLANT
INTERACTION

The temporal dynamics of the pollinator-plant mathematical
models have been raised from two points of view, which are:
Deterministic (see [11] and [12]) and probabilistic (see [14])
models. Later, the mathematical models were constructed to
describe such interaction including the spatial part (see [9] and
[5]). We will focus on the deterministic models.

This section is divided into two parts. In the first part we
begin by exposing the results of different types of dynamical
behaviors of a temporal model. Namely, transcritical and
pitchfork bifurcations and the existence of heteroclinic orbits.

The second part is for the spatiotemporal dynamics a
mathematical model with a novel factor is introduced. This
takes into consideration that the pollinators, move towards
those places in the habitat where the plant population density
is high. In this part we will show some of the effects, obtained
while considering the spatial part by the numerical simulation.

A. Temporal Dynamic

Most models of pollinator-plant interaction exhibit
unrealistic behavior, such as an unlimited growth of both
populations, or that some terms do not have biological
meaning, to name a few (see [1] and [11]). The model we
are going to study next incorporates several characteristics
that are based on experimental observations (see [4] and
[10]). This model does not represents an unrealistic behavior.
The construction of this model can be seen in [2] and
[10]. Let @ = a(t) and p = p(t) represent the population
density of pollinators and plants at time £, respectively. The
mathematical model is:

. k20u2ap

a = alk—a)+ ——— 1
(k=) + 200 n

. n kiopap

e A

where the dot on a and p denotes the derivative with respect
to time. All the parameters appearing in system (1) have an
important ecological interpretation, (see [9] and [10]). Let

4vko
dkror (I + %)2

Then, Table I shows the existence of the equilibrium points,
based on the parameter values of the system (1).

All the points of table (I) exists in the positive quadrant,
except when:

v
= and =
M1 ok Ho

k

o If y = pand k < ﬁ, then (aj,p7) is in the positive
quadrant. L

o If g = pand k > i, then (aj,p7) is in the fourth

quadrant.

TABLE 1
THE EQUILIBRIUM POINTS’ CLASSIFICATION IN SYSTEM (1)
< o - 0,0)  (%,0)
_ fk>- (0,00 (k0)
H = o kd)
If k < f 0,0)  (k,0) (ag,py)
k
po < < Iszf (0,0)  (k,0)
k
If k < f (0,0)  (k,0) (af,p}) (a3,p3)
k
p=p m:i (0,00 (k,0)
ko -
If k # E (O’O) (k,O) (a1¢p1)
k2 * * * *
1 < p If k # E (0,0)  (k,0) (ay,py) (a3,p3)
k
If k = f 0,0)  (k,0)

o If 1y < p and k # %, then (a},p3) is in the fourth
quadrant.

The classification of the local stability of each of the

equilibrium points is:

e The equilibrium point (0,0) is unstable (just like a
saddle), for all values of the positive parameters.

o The stability of the equilibrium point (k,0) is classified
according to the associated eigenvalues of the Jacobian
matrix of system (1), evaluated at the equilibrium point
(k,0). The Jacobian matrix is:

kkoplo }

—k
g, = 2
H { 0  kkipo—~ @

The Jacobian matrix .J, is an upper triangular matrix,
which has as eigenvalue:

M = kkijpo—~ N = —k 3)

Thus, the stability of the equilibrium point (k,0) is
classified as follows:
— If u < 1, then the equilibrium point (&, 0) is locally
asymptotically stable.
- If p = p, then the equilibrium point (k,0) is
nonhyperbolic.
- If p > pg, then the equilibrium point (k,0) is
unstable, (saddle).
Using Table (I) and results from above, we conclude the
following results.
Theorem 1: Let p > 0.
o If ko # k¢, then in system (1) a transcritical bifurcation
takes place. The point of bifurcation is: ((k,0); u1).
o If ko = k¢, then in system (1) a pitchfork bifurcation
takes place. The point of bifurcation is: ((k,0); p1).
Proof: To prove theorem (1), we will consider the system:

a = a(k—a)(l+ ¢ou’p) + keopap 4)
p = —yp(l+dou’p) + kiopap

Systems (1) and (4) are topologically equivalent in Ri. Later
we apply the translation: ap = a—Fk, po = p and p111 = p—pq.
Finally, we apply a suitable linear transformation (see [7] and
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[13]) to get a system of the form (& = Jx + F(z)) as shown
next:
a1 = filar, p1, pa1) &)
pr = fala1,p1, pa1)

where! and 111, is the new parameter. Now we include 111 as
a new variable in system (5), like:

ar = filai,p1,pi)
p1 = falar,p1,pa1) (6)
fiin = 0

System (6) has an equilibrium point at (ai,pi,p11) =
(0,0,0), The Jacobian matrix’s eigenvalues of the linear
approximation of the system (6) are 0, —& and 0 and hence by
the center manifold theorem, system (6) has a two dimensional
center manifold and can be represented by the graph of a
function depending on a; and g7 variables. This is:

we = {(a1,p1,p11) € Rlp1 = ri(a, p11),71(0,0) =0,

Dr1(0,0) = 0} (7)

where a; and w17 the variables are small enough. Now we

are going to find an approximation to the center manifold

depending on the parameter 11;. We suppose that the form
of the center manifold is:

ri(ar, p11) = c1ad + coarpan + capiy + o (3)

where the coefficients ¢; are determined next. From (8), we
have:

. dry drq .
= — — 9
PL= e @ + dltuun )
We substitute (8) in (5) and using (9) we obtain:
d?’l
falar,ri(ax, pin), pa1) = Efl(alﬂ'l(ahﬂll)’ﬂll) (10)
1
this is,
d’f’l
Efl(alarl(alyﬂll)’ﬂll) - f2(<1177"1(a1,ﬁt11)7u11) =0
(11)
equating terms of same power to zero, we find:
ol = k20 kkip110)* (y(ks — k) +b*)
]{34]{?%0‘2(2]{)1}1110 + 1)
c2 = 0
c3 = 0
b = E2o(1 4 kypno) — vk g do.
Substituting these values into (8), we obtain:
riar, pn) = crai + - (12)

subsequently, by substituting (12) into (6), we obtain the
reduced vector field on the center manifold:

a1 = fu(ar,r(ar, pa1), pan) (13)
= 0

'Here f1 and fo are not written because they are very large expressions.

where
fu = a 2k5Kk5 3 0t + KOk a0
=" kSkio?(2kipiio + 1)
Lo B3k20(2k o + 1) (y + kkypi0)?c*
! k5k‘1102(2k1,u110 + 1)
+
where ¢* = v(ko — kd) + kkipr10 (ke — v¢), with
f11(0,0) = 0 14)
0
%(07 0) = 0 (15)
0
a;{i (0,0) = 0 (16)
82
& fu 29 (k2 — ko)
aa% (07 0) = k2]€%0' (18)
& (0,0) = —67°¢* (19)
da} 7 k2kio?
Since the53121 parameters’ values are positive, then kkio # 0
and —6v°¢ #0.

k2kio?

If ks — k¢ # 0, then (14)-(18) show that the orbit structure
near ((0,0); pu11) of system (5) is qualitatively the same as the
orbit structure near ((0,0); j111) of &1 = p11a1Fa?. Therefore,
transcritical bifurcation takes place in system (1).

If ko — k¢ = 0, and (14)-(19) show that the orbit structure
near ((0,0); p11) of system (5) is qualitatively the same as the
orbit structure near ((0,0); ut11) of @1 = p11a1 Faf. Therefore
pitchfork bifurcation takes place in system (1). |

In Fig. 1 we observed the transcritical bifurcation of system
(1) for some values of the parameters’. These values were
taken from [9]. Now we state and show of the following
theorem.

k
Theorem 2: If k < —2, then in system (1) a saddle-node

bifurcation takes place. The bifurcation point is ((ag, pg); o)
where

2 3

aa _ % (k‘ + @) , ps _ kla(k2 + kf)g(]ZQ k¢)
¢ 16v2k3¢

Proof: To prove bifurcation we using the Sotomayor’s

theorem (see [7], pp 338 — 339). The equilibrium point is

(a§,pf), The bifurcation parameter is p and the bifurcation

value is 1 = po. Let F' be the vector. This vector is right

hand side of system (1), namely,

koo plap

1+ gop?p

kiopap (20)
L+ ¢op?p

the derivative of vector F' with respect to p is:

alk —a) +
F((a,p);p) =
—w+

2aksppo
(ppop® +1)2
_akipo(p’pdo — 1) @D
(ppop?® + 1)

2We used the software MATLAB to obtain the numerical solutions for all
the ODE systems presented in this paper, also we used symbolic computation.

F.((a,p);p) =
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Fig. 1 Phase Portraits of the system (1)

310



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:6, 2016

The Jacobian matrix of the system (1) at equilibrium point
((ag,pg); po) is:

k ks 22ks0
J = 2 20 k%a(kg + ko)
o ko (ks + k¢)? (ks — ko) (k2 — ko)
8vk§q§2 2ko
The eigenvalues and eigenvectors of .J,,, are:
A= 0
k3 + ¢ (ko — ko) + kkao
Ao = —
2k
472 ko ?
T— ok} (ke + ko)?
1
_ ke
vy = kio(ks — k2¢?)
1

The eigenvectors of (J,,)" are:

kto(ks — k*¢?)

wi = dvk3p
1
_ ok3(ks + ko)’
Wy = 4’}/2]{:29132
1

Executing the following calculations:

k302 (ke 4 k)® (ke — ko)
642 k3 o

w{Fu((mp)Wﬂ(a;,ps,uS) -

8739 (ky — ko)

W D2 F((a,p); 1) (or, 00)]| = Sre e 20 o

ag,py1G)

k2o (ky + k)3

where w{F),((a,p,h);p) and w{[D*F((a,p,h);p)(vi,v1)]
were defined in [7].

If kb < —2, then the both results of (22) are different

from zero. Therefore by Sotomayor’s theorem there exists a
node-saddle bifurcation in system (1). u

For some parameter values, the global behavior of system
(1) is shown in the following theorem.

Theorem 3: If jn = pp and k < —2, then in system (1) exists
a heteroclinic trajectory. This trajectory connects the unique
nonhyperbolic equilibrium point (ag, p3) with the equilibrium
point (k,0).
Proof: To prove this theorem, we define:
Qo = {(a,p)|k < a < a5, 0<p<pg}
In a straightforward calculation is easy to verify that the vector
field of the system (1) in the boundary of 2y is pointing
inwards the region 9. On the other hand:
o (k,0), is an equilibrium point asymptotically stable. The
subspace of the equilibrium point is generated by vectors

s —1672kk3 ¢?
E _{(170)’(k%0(k}2+k¢)4’ k

o ()2;’

e (ag,ps), is a saddle-node equilibrium point. The
equilibrium point has two subspaces: a stable one and
a central one, generated by:

s _4fyk%¢
b= { (k%a(k% — k2GR 1) } @9

c 4y2 ko p?
P= {(k%awz T k¢>2’1)} =

respectively. The center manifold w® is tangent to E°. It
is easy to see that E° is within Q.

System (1) does not have a periodic trajectory into g, (see
[2D).

Let ¢(t) the trajectory, which is tangent to £, furthermore,
we have that the trajectory, ¢(¢), is pointing inwards Qg
and since the vector field is continuous and does not have a
equilibrium point into Q¢ — {(k, 0); (ag, p§) }, neither periodic
trajectory into €y and equilibrium point (k,0) is stable,
then by Poincaré-Bendixson theorem, the trajectory o(t)
when ¢ — oo is going to (k,0). Therefore, system (1)
has a heteroclinic trajectory that connects the nonhyperbolic
equilibriums (ag, p§) and (k,0). This trajectory exist during
the saddle-node bifurcation, see the second phase portrait of
Fig. 1. u

For other parameter values, the global dynamic of system
(1) is shown in the following theorem.

Theorem 4: For each parameters values satisfying p = p;

and

k
and k < —2, then the system (1) has a heteroclinic trajectory

that connecting the nonhyperbolic equilibrium point (k,0)
with the unique hyperbolic equilibrium point (a}, p}), where
ko . kkio(ks — ko)

—andpy = ——o—5——

Proof: To prove theorem (4), let us define the region

Q1 = {(a,p)lk <a<a},0<p<pi}

a] =

By a straightforward calculation is easy to see that the vector
field of system (1) in the boundary of €2 is points inwards
the region ;. Furthermore
e (k,0) is a nonhyperbolic equilibrium point. The
eigenvalues and eigenvectors of the Jacobian matrix
evaluated at (k,0) are:

A = 0 Ay = —k
2
v k2 1
26
v = k2k2o vy = ( ) (26)
1 0

Note that the vector v; is inwards 2.

e (af,p;) is an hyperbolic equilibrium point. The
eigenvalues and eigenvectors of the Jacobian matrix
evaluated at (aj,pj) are:

—k3 — vp(ka — ko) +r

M=
2ka¢p

W BB 6le—ke) -1 e

2 2k

where

r = /K — 10 (ke — k) (2R3 + 7k¢? — kot — dkkao)
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Note that the real parts of eigenvalues A\; and Ay are
negative, therefore the equilibrium point is stable’.

Let ¢(t) the trajectory which is tangent to E*, furthermore,
we have that the trajectory, (t), is pointing inwards €y
and since the vector field is continuous and does not have
an equilibrium point into €y — {(k,0); (a},p})}, neither
closed trajectory into €y and equilibrium point (af,p}) is
stable, then by the Poincaré-Bendixson theorem, the trajectory
©(t), tends to (aj,p;) when t — oo. Therefore, system (1)
has a heteroclinic trajectory to connect the nonhyperbolic
equilibrium point (k,0) with the equilibrium point (ag, pg).

]

The following result exhibits the global dynamics of system
(D).

N Theorem 5: For p and k satisfying p; < p and k #
22 the system (1) has a heteroclinic trajectory connecting
the equilibrium point (k,0) with the nontrivial equilibrium
(a1, p7). N

Proof: Let 11 < pand k # 52, then the system has three
equilibrium point. They are:

o (0,0) is a saddle point.

e (k,0) is a saddle point. The eigenvalues and eigenvectors

of the Jacobian matrix evaluated at (k,0) are:

A= kkipo —~ A=k

kkopio 1
vro= k+ kkipo — 2= 0

e (a},p}), is global attractor in R3 .
Note that v; is in the positive quadrant. Since

~y
okky
== 0<k+kkipo—v

< p =

hence v; lies the positive quadrant.

Let v; is the tangent of the trajectory o(t) at equilibrium
point (k,0). The trajectory ¢(t) is tangent to wv; and
furthermore this trajectory is inside a positive quadrant. On
the other hand since (af,pj) is a global attractor, then by
the Poincaré-Bendixson theorem, ¢(t) when ¢ — oo is going
to (af,p}). Therefore, if p1 < p, then the system (1) has a
heteroclinic trajectory. This trajectory connects the equilibrium
(k,0) and (a7, p}), after a transcritical bifurcation takes place.

]

B. Spatiotemporal Dynamic

In order to study the spatial effects when pollinators and
plants interact in the habitat, we consider the following
hypotheses: (1) the movement of pollinators is towards those
places of the habitat where the plant population density
is high. (2) The plant population does not move, but its

3The characteristic polynomial is:

K3 +6(ks — k¢) | L ks — ko)
k2¢ k2¢

p(A) =A% +

spatial distribution changes because of the interaction with the
pollinator, and (3) The temporal dynamic is given by system
(.

A mathematical model which incorporates the above
hypotheses is

u B . k‘QO’,UzQCLp

5 = Dudivlfip)va+alk—a)+ + ¢opp

ap k10',Uﬂp

o _ kopap 28
T P T gopp -

where a = a(Z,t) and p = p(&,t) are the pollinators and
plants densities at the position & € €, at time ¢. Homogeneous
Neumann boundary conditions on the boundary 02 and
fi(p) > 0 with f1(0) > 0 are consider.

Note the function f; measures the intensity with the
pollinator moves toward those places of high plant density.
Actually this is a novel ingredient int he study we present.
Since for instance in [9] the authors consider constant diffusion
coefficient for the pollinators.

With the purpose of finding the numerical solutions of the
system (28), we will consider the region Q = {(z,y)[0 <
x < 10,0 < y < 10}, with homogeneous Neumann boundary
conditions. The initial conditions we consider are:

a(z,y,0) = pi(1+0.01lsin(z + y)cos(z —y))
p(z,y,0) = aj(1+0.01sin(2z))

where (aj,p}) is the positive stable equilibrium point of
system (1).

In order to have an idea of the spatial effects when
pollinators move towards those places of the habitat where
the plant population density is high, we consider functions f;
of the form f;(p) = a1p, where a; > 0. We carried out several
numerical simulations®.

In Figs. 2 and 3, the results of our numerical simulations are
show. There, the color scale represents a heat-likes spectrum,
in which the purple color represent low density populations,
while red color corresponds to the high populations density.
This color scale will be used throughout the text.

By selecting various values of a; such that 0 < a; < 0.5,
all the numerical simulations show: (1) The existence of a
transient of the pollinator and plant populations where share
the same habitat, see 2(c) and 2(d). (2) The steady and
homogeneous state acts as an attractor in the space of solutions
of the system. The final distribution of both populations
become homogeneous. This can be seen in the last two figures
2(e) and 2(f).

A second numerical simulation was carried out for the
values of a; are such that 0.5 < a;. The result show: (1)
The transient of the pollinator population tends to occupy the
entire habitat, on the other hand, the plant population occupies
the habitat gradually, see 3(c) and 3(d). (2) The steady and
homogeneous state acts as an attractor in the space of solutions
of system (28), that is the final distribution of both populations,
becomes homogeneous, see 3(e) and 3(f). This is shown in
Figs. 3.

4We used the FlexPDE software to obtain the numerical solutions for all
the PDE systems presented in this paper
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Fig. 2 Numerical simulation of system (28), with D1 = 1 and f1(p) = 0.1p
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Fig. 3 Numerical simulation of system (28), with D; = 1 and fi(p) = 10p
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The interpretation of the above results is as following: In
both cases, the populations coexist but the way how they are
distributed in the habitat is different. This happens during
transients.

The difference that we observe during transients may be
due to the fact that the diffusion coefficient depends directly
on the density of the plant population, said fact allows
us to obtain different ways that this populations distribute
themselves during transients.

III. THE MATHEMATICAL MODEL OF PLANT-HERBIVORE
INTERACTION

This section is devoted to describe the qualitative behavior
of the plant-herbivore interaction by a mathematical model.
This type of model has the attracted in attention recent
publications, (see [2], [8] and [9]). Since this relation type
is determinant for the existence of life. Without the presence
of the plant or herbivore population the food chain as we
know it will break. This event involves a radical change in
the environment. Other factors may also alter the environment
such as scarcity or abundance of water.

This section begins by presenting the results of different
types of dynamical behaviors of a temporal model. These
include transcritical bifurcations and existence of a heteroclinic
orbit.

Later, for the spatiotemporal dynamics of the mathematical
model a novel factor is introduced. This consists in considering
that the herbivores, move towards those places of the habitat
where the plant population density is high. In this part we
show some effects which are obtained considering the spatial
part of the numerical simulation.

A. Temporal Dynamic

A very particular characteristic of the model that we will
see next is that this model is of predator-prey type. Since,
from the viewpoint of the authors in [2] and [9], the herbivore
is benefited from plants, but the plants are harmed by the
presence of herbivores. The interaction term is described by a
Holling response of type II. We denote by h(t) the herbivore
population density at the time ¢. The mathematical model is:

S _py_ ph
P = p(l k) 1+p 29)
. ph
h = —afh+f——
af ﬁ1+p

where «, [, and k are positive parameters.
The equilibrium points of the system (29) are: (0,0), (k,0)

and (p, h), where
_ a = _ D
= h=(1 1-=
P=1—g ( +p)< k)

To continue we will show the classification of each
equilibrium point.

o The equilibrium point (0, 0) is unstable (saddle), for all
k>0,a>0and g >0.

o The local stability analysis at the equilibrium point (&, 0)
given us:

- If % < k, then the equilibrium point (k,0) is a
stabl% node.
- If T—a > k, then the equilibrium point (k,0) is a
saddle. o
-Ifk = T
nonhyperbolic.
The local dynamics is given by the following theorem.
Theorem 6: In system (29) transcritical bifurcation takes
place. The bifurcation point is ((ko, 0); ko), where
e

, then the equilibrium point (k,0) is

ko =
T 1

Proof: To prove, we will consider the next system
. p
po= p(1-2)(1+p)—ph (30)
h = —aBh(l+p)+ Bph
The systems (30) and (29) are topologically equivalent in ]R+2,

later we apply the translation: pg = p — k, hg = h and k11 =

k — kg and obtain:
. (a+ k11 +po — aki1 — apo)b
= 31
bo (o = 1)(a + k11 — akrq) Gh

—pB(a—1)(k11 + po)ho

ho
where
b= ((1+ki1)po + (a+ki1)ho + (1 — a)p§ — aki1(ho +po))

Later, we apply a linear transformation suitable (see [7] and
[13]) to system (31), which is transformed (& = Jz + F(z))
as follows:
p1 = fi(p1,h1,k11) (32)
hy f2(p1, has kin)

where® ki; is the new parameter. Now we include a k; as a
new variable in system (32), this is:
P = fi(p1, b1, ki) (33)
hl f2(p17h17k11)
kin = 0

System (33) has an equilibrium point at (p1,h1,k11) =
(0,0,0). The eigenvalues of the Jacobian matrix are 0, —=, 0,
and by the center manifold theorem, system (33) has a center
manifold two dimensional and can be represented by a graph
with p; and kq; variables, this is:

We = {(p1,h1,k11) € Rlh1 = r1(p1, k11),71(0,0) = 0,
Dr1(0,0) =0} (34)
for p; and ky; small enough. Now we are going to find an

approximation to center manifold depending on parameter k1.
We suppose that the form of center manifold is:

r1(p1, k11) = c1pt + capikin + cskiy + (35

where the coefficients ¢; will be determined later on. From
(34) we have
hi =i+ ok (36)
P1 1

SHere fi and fo are not written because they are very large expressions.
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We substitute (35) into (33) and using (36), we obtain:

dr
fa(pr,m1(p1s ki), kin) = ﬁfl(plﬂ'l(pl-,kll)skll) (37)
1

equivalently

%fi(]ﬂhﬁ(pl, ku),ku) - fz(p177’1(p1, /fu),k?u) =0

(38)
simplifying and equating the coefficients of the same order in
p1, we find:

d = (a—1)(a+kip — akyp)? + b
(1—ki(a—1)(B—af+1))2c*

c2 = 0

c3 = 0

b = Bla—1)(a—a?)(a+k —ak)

¢ = (1—-ku(a—1)(268—-2a+1)).

Now let us substitute in (35) the coefficient values founded
above, we obtain:

r1(p1, k11) :Clp%Jr"' (39

By substituting (39) into (33), we obtain the reduced vector
field

1131 = f11(p1,ﬁ(p1,l€11)7/€11) (40)
ki = 0
where
fuu = p[Bkii(1— )]
+ 2 B(O{—l)((l-’-k‘u —Oék’u)
7 k11 — ak11 + Bk — 2afki + a2 Bk + 1
with
f11(0,0) = 0 (41
f11
0,0) = 0 4
ap, ) (42)
O0f11 _
(0.0 = 0 43)
9% f1n _
W(O’O) = —Bla—-1) (44)
02 f
ap?(oAn = 208(a—1) (45)

Since 0 < v < 1, then (41)-(45) show that the orbit structure
near ((k,0); ko) is qualitatively the same as the orbit structure
near ((0,0); k11) of p1 = k11p1 F p?. Therefore there exists a
transcritical bifurcation in system (29). |

Fig. 4 shows the phase portrait of the system (29) for
some values of the parameters. Here, we complete the stability
analysis of the equilibrium point (p, h), when there exists in
the positive quadrant. These are the results:

1)Hk>L0<a<1mdk>Tgamm
—

1 -
o If £ < ﬁ, then (p, h) is asymptotically stable

-«
(see [9)).
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i a, then (p, h) is unstable and a stable

o If kb > 1
limit cycle emerges from a Hopf bifurcation (see [3]
and [9]).
2)Ifk=1and 0 < a < %, then (p, }Nl) exists in the
positive quadrant, where

o ~ 1 -2«
h=—
e (1—a)?

p=

This point can be a stable node or transcritical.

To exhibit the global dynamics of system (29), we state and

show the following theorem.
a l4+a

l-a’l—a)’

the system (29) has a heteroclinic trajectory. This trajectory
connecting the equilibrium points (k,0) and (p, h).

Proof: Let k such that k € @ , LS a). then the

l-a 1-a

equilibrium point (k, 0) is a saddle and the equilibrium point

(p, h) is a global attractor (see [9]).

We consider the eigenvector vy associated with the positive
eigenvalue and let ¢(t) the trajectory, which is tangent to v
at equilibrium point. Since v9 is inwards the positive quadrant
then the trajectory ¢(t) when ¢ — oo will converge to (, k).
Therefore, if k satisfying the hypothesis then the system (29)
has a heteroclinic trajectory. ]

Fig. 5 shows an heteroclinic orbit of the system (29) for
some specific parameters values satisfying the condition of
the Theorem (7). Note that this trajectory exists after of the
transcritica bifurcacion, see the second phase portrait of the
Fig. 4.

Theorem 7: For each k such that k£ €

B. Spatiotemporal Dynamic

To study the spatial effects when plants and herbivores
interact in the same habitat, we consider the next hypotheses:
(1) the herbivores move towards those places of the habitat
where the plant population density is high. (2) The plant
population does not move, but its spatial distribution changes
because of the interaction with the herbivores, and (3) the
temporal dynamic is given by system (29).

A mathematical model that reflects the above hypotheses is

dp p\  miph

Lo p1-8) - 4
ot p ( k) s+p (46)
oh maph B

= Dsydiv|[fa(p) 7 h] + nh,

ot s+p
where p = p(#,t) and h = h(Z,t) are the plants and
herbivores densities at the position ¥ € (2, at time ¢.
Homogeneous Neumann boundary conditions on 02 are
consider. The function f5 is such that fo(p) > 0 and f2(0) > 0
for p > 0. This function measures the intensity with the
herbivore moves toward those places of high plant density.
As a matter of fact this is a novel ingredient in the present
paper.

We obtain the plant-herbivore model proposed in [9], when
f2(p) = 1. In order to find the numerical solutions of the

system (46), we are going to consider the rectangular habitat
2, with initial conditions given by

p(,y,0) P14 0.2sin(x + y)cos(z — y))
h(z,y,0) = hi(1+ 0.4sin(2z))

where (pj, h}) is the unstable equilibrium point of the system
(28). This point is obtained with the parameters values for
which the system (28) has a stable limit cycle.

To have an idea of the spatial effects when the movement
of herbivores is towards those places of the habitat where the
plant population density is high, we consider the function fo of
the form f5(p) = byp with by > 0. After we carried out several
numerical simulation we obtained the following observations:

By selecting different values of b such that 0 < b; < 0.1.
we observe in the numerical simulation that the herbivore
population moves to those places where the plant population
density is high. This originates a decreasing in the plants
population density where there is a high density of herbivores
and increasing plant where there are few herbivores, resulting
in a traveling wave like behavior. See Figs. 6 (a)-(d) and 7
(a)-(d). On the other hand, if by is such that b; € (5,10),
then the result of the numerical simulation is carried out and
we can observe that the population coexist through periodic
oscillations, see Figs. 8 (a)-(d) and 9 (a)-(d).

The observed effects on the numerical simulation are the
following:

« Both populations coexist in the rectangular habitat.

o The way in which the populations distribute when they
coexist, can be seen either a travelling wave like or as
temporal periodic oscillations.

o The result of the previous behaviors is due to the
dependence of the herbivores movement. Remember this
it is towards place where the plant populations density is
either high.

IV. THE MATHEMATICAL MODEL OF
POLLINATOR-PLANT-HERBIVORE INTERACTION

In this section, we focus in the study of the temporal
dynamics of the pollinator-plant-herbivore interaction by a
mathematical model. The following model has many important
characteristics, some of which are, that the interaction terms of
pollinator-plant and herbivore-plant are describe by a Holling
response type II. In the pollinator-plant interaction both
populations benefit from each other. In the plant-herbivore
interaction, the first population is harmed, but the second
population is benefited. The pollinator-herbivore interaction is
an indirect relation. The construction of this model can be
found in system [2] and [9]. The mathematical model is:

“ (1 B g) g(h)ksopap

“ = k 1+ ¢poup
) g(h)kyopap  miph
= —p+ - 47
b AT ooup  s+p “7)
b= —ohy M2Ph
s+p
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Fig. 5 Heteroclinic orbit of the system (29)

where the function g € C[0,00], g(0) = 1, ¢'(h) < 0
and g(h) > 0 ¥V h > 0. The ecological interpretation of
the function g is as following. The function g is the rate of
visits of pollinators to plants which depends on the herbivore
population density (see [9]).

The points (0,0,0) and (k,0,0) are equilibrium points for
all values of the positive parameters of system (47). The
stability of each equilibrium point is the next:

o The equilibrium point (0,0, 0) is unstable (saddle).
o The eigenvalues associated a linear approximation of the
system (47) at equilibrium point (k, 0, 0) are:

)\1 = ]{3]{71#0’ - )\2 = -1 )\3 = -0

Therefore the stability of the equilibrium point (k,0,0)
is classified as follows:
-Ifu< L, then (k,0,0) is a local attractor.
kkyo

k}k?l(T
- If no=

- Ifp> , then (k,0,0) is a saddle point

——, then (k,0,0) is a nonhyperbolic
equilibrium point.
With the following results we show the equilibrium point
classification.

Theorem 8: Let jy = # If ko # ¢, and g(0), ¢'(0),
o

1

¢”(0) and g’”"(0) are defined, then in system (47) a transcritical
bifurcation occur. The point ((k,0,0); 1) is the bifurcation
point.

Proof: This uses the Sotomayor’s Theorem (see [7]). The
equilibrium point is (k,0,0), the bifurcation parameter is p
and the bifurcation value is: pu = p;. Let F' be the vector

field. Corresponding right hand side of system (47), i.e.,
g(h)keop*ap

a
a<1_E>+ 1+ gpopu?p
h)kioua myh
F((a,p,h); p) = —w+gl(+)g;052pp— Sjr;:
o+ T2hp
S+0p

(48)

the derivative of vector F' with respect to p is:

2kopoap

WG g2
_ymhooop = ap | 49)
(1 (;L pou?p)?

E,((a,p,h);p) =

The Jacobian matrix of the system (47) at the equilibrium point
((k,0,0); p1) is:

- ’72]?2
kkc
Jul = 0 01 0 (50)
0 0 —0

The eigenvalue and eigenvector of .J,, are:

A= 0 Ao = -1 X3 = 4
vk 1 0

v = k:klfa vy = 0 vy = 0
0 0 1

(51)
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(c) Plants at time t=15.19 (d) Herbivores at time t=15.19

Fig. 6 Numerical simulation of system (46) with D = 1 and f2(p) = 0.1p

The eigenvalues of (.J,,)" are: where w![DF),, ((a,p, h); p)v1] is defined in [7]. Since (53) is
zero, (54) is non zero and if ko # ¢, then (55) is not zero, then

0 —kkio by Sotomayor’s theorem there exists a transcritical bifurcation
1 2k in system (47). |
wr = > w2 = 1 .. .
The nontrivial null-clines of system (47) are:
" 0 (52)
0 ay | g(h)kaop’p
1—— )+ 5" 0
" _ 0 k L+ opu?p
3 o . B g(h)kiopa b 0
l+ogu’p s+p
. . map
Now we carry out the following calculations: -5+ = 0
Y S+p
If g(h) = 1, then the intersection point of null-clines is
Wi Fu((@,p, 1) )] 4 0.0,y = O (53)
. Skkop?so . )
° a =K+ —m— P =
dpsou? +mo — 8 mg — 0
wi[DFlll((avl% h);:“’)”l”(k’o’(),ul) = kklg (54) h* — 8+p* —y k'l,uoa*
my L+ opu?p*
P The following theorem gives us conditions of a positive
Wi [D F((G/7p, h)a M)(vl? vl)”(k,o,(),ul) = equﬂ]bnum
23 (ko — @) Theorem 9: Let g(h) = 1. In system (47) the equilibrium
—— (55) . .o ey . S .
k2 k%o’ point (a*, p*, h*) given above is positive if and only if mg > ¢
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(c) Distribution at time t=139.47

(d )Distribution at time t=139.47
Fig. 7 Numerical simulation of system (46) with Dy = 1 and f2(p) = 0.1p

and k > k*, where the following inequality for &

. v(ma + 5(sodu? — 1))? f v(ma + d(sopp® — 1))

k= (56) R —0) (0501 2(H + k =5

kypo(me — 0)(dpsopu? +ma — § + dkap?so) 1po(mg — 6)(dsop® (¢ + k2) + ma — 6)
& k>k
Proof: Let (a*,p*, h*) be nontrivial equilibrium point,
. where:
now we are going to analyze the cases next:
2 2
e a* is positive for all value parameters. k* = v(ma + 5(5?25“ —1) .
e p* is positive, if and only if, ms > 4. kypo (mg — 8)(dsop?(¢ + k2) + ma — 0)

o h* is positive, if and only if, h* > 0, namely Therefore, if ms > § and & > k*, then a equilibrium point

k ) exists (a*,p*, h*) in the positive octant. [ |
LCLQ* >y On the other hand, we have that the Jacobian matrix of
L+oou’p system (47) at the equilibrium point (a*, p*, h*) is:
& kpoa > y(1+ opp’p®)
Jino Jiz 0
Jy=| Jor Jaz Jo3 (57)
substituting a* and p* into the last equation we arrive to 0 Js2 O
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(a) Initial condition (b) Initial condition

3
mﬁ

(c) Plants at time t=11.61 (d) Herbivores at time t=11.61

Fig. 8 Numerical simulation of system (46) with D2 = 1 and f2(p) = 10p

where The explicit form of characteristic polynomial is:
J = Skoplso i pA) = A+ a X2 + a1\ +ag (58)
e dpsou? +mo — 8
J _ Okiusa where the coefficients a; for ¢+ = 1,2,3, can be seen in
2t Opsopu® +mg — 9 Appendix (A).
g kko (0 — ma)uon Proposition 1: Let system (47) with g(h) = 1. If k = k*,
BT (6psop2 +my —0)? then (a*,p*, h*) is a nonhyperbolic equilibrium point where
Jon = 01 O(kk1(3 —ma)?pon(p?dso — 1))
2 = T, 2 —5)3 (ma — 0 + opu?ds)
mo (dpsop? +ma — §)3me ot = y(ma 1z
Jer = (6 —ma)y n kk1 (6 —ms)2uon kyopu(ms —0)
32 "y mi(0psop? +my — 6)2 o= 0s
6m1 mo — 0
Joz = . K =0
and
n = (0kosop® + Spsop® +my —9). Proof: By a simple calculation, we have that the Jacobian
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(a) Distribution at time t=14.59 (b) Distribution at time t=14.59
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(c) Distribution at time t=50.74 (d) Distribution at time t=50.74

Fig. 9 Numerical simulation of system (46) with D2 = 1 and f2(p) = 10p

matrix of the system at the equilibrium point is where
2 2
Ju Jiz 0 - ﬂwso(kﬁwﬂﬂ) L
n
Jpe = | Jo1 Ja2 Jos (59)
_ A0ypPso|(6 — ma) (ke — ¢) 4 0pdso(ka + )]
0 0 0 Y = 2
Ui

By the structure having the matrix Ji~, its eigenvalues and Because A\; = 0, the equilibrium (a*,p*,h*) is a
eigenvectors are: nonhyperbolic equilibrium point. ]

A set of numerical simulation of system (47) show the
existence of the at least one equilibrium point in the positive

A= 0 (60)  octant. The equilibrium point can be a local attractor. For the
A 1 op*so (kg 4+ yo) 1 other parameters values, the emergence of a limit cycle was
5 = —|l-————14+nr :
2 Ui also observed. See Fig. 10.
N 1 Su?so (ko 4+ v9) 1 In both cases, the three populations coexist through periodic
N n TN behaviors or damped oscillations.
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Fig. 10 Phase Portraits of the system (47), with g(h) =1

V. SUMMARY AND WORK IN PROGRESS

Along this paper, we focus our attention on studying the
qualitative behavior of the three population (pollinators, plants
and herbivores) mathematical model. This study involves
both temporal and spatiotemporal dynamics were based on
a situation more realistic situation. This is a list of our
results and some research we think its worth to consider as
continuation of study presented in this paper.

o We show the existence of some pretty interesting

qualitative properties like bifurcation and heteroclinic
orbits in the models raised by other authors to describe
the temporal dynamics between pollinators, plants and
herbivores.
The results suggest the existence of a limit cycle a
local attractor to the temporal dynamics of the three
population; an issue which, the authors consider, will be
really interesting to analyze.

o In this paper we just explored the spatiotemporal
dynamics of two mathematical model. Namely for
pollinator-plant and plant-herbivore with the novel
ingredient: The plant density dependence of the diffusion
term for the pollinator and herbivore. However it is worth
to consider such a dynamics when the three populations
interact. This aspects are under current investigations by
the authors of this paper.

o The presented results of the spatiotemporal dynamics
were obtained by considering the homogeneous Neumann
boundary conditions. The authors consider that the
possible changes that could be caused by using the
homogeneous Dirichlet boundary conditions, can provide
an interesting comparison between both sets of results.
Actually this aspect is also under current investigation.

APPENDIX A
DETERMINATION OF THE COEFFICIENTS a; IN (59)

By using the MATLAB software we found the coefficients
a; in (59). These are:

Skk1 (8 — ma)?pon(ulgpso — 1)

@ = (0psop? +mo — 0)3my
oy Skop?so
* me | Opsop +mg —0 +1
(148 —mo)  Okkika(6 —ma)?pPso?n
@ = ma B (0psop? +mg — )%
kk1k3(5 — mo)?uSs03 (u2pso — 1)
- ma(0psou? + mg — )4
262kk1ko(6 — ma)?ulso?(ulpso — 1)
+ ma(dpsou? +mg — 6)3
N Spo (kk1(6 — ma)? + dvkaus)
ma(dpsou? +mo — 0)
n Skk1(6 —ma)?uo(Skep?so + p2pso — 1)
ma(dpsou? +mg — )32
o §(8 —ma)(ma — & + Skop?so + Supsa)by
0T (dpsop? — 8§ + ma)3me
bo = (6psop® — 8 +ma)? + kkyuo (5 — ma)(by)
by = mo—0+ (Skg,uQsa + 5u2¢>so
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