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Vibration and Parametric Instability Analysis of
Delaminated Composite Beams

A. Szekrényes

Abstract—This paper revisits the free vibration problem of
delaminated composite beams. It is shown that during the vibration of
composite beams the delaminated parts are subjected to the
parametric excitation. This can lead to the dynamic buckling during
the motion of the structure. The equation of motion includes time-
dependent stiffness and so it leads to a system of Mathieu-Hill
differential equations. The free vibration analysis of beams is carried
out in the usual way by using beam finite elements. The dynamic
buckling problem is investigated locally, and the critical buckling
forces are determined by the modified harmonic balance method by
using an imposed time function of the motion. The stability diagrams
are created, and the numerical predictions are compared to
experimental results. The most important findings are the critical
amplitudes at which delamination buckling takes place, the stability
diagrams representing the instability of the system, and the realistic
mode shape prediction in contrast with the unrealistic results of
models available in the literature.

Keywords—Delamination, free vibration, parametric excitation,
sweep excitation.

1. INTRODUCTION

ASICALLY, to calculate the natural frequencies and
mode shapes in delaminated beams two approximations
are known in the literature: the constrained and free mode
models. The constrained mode [1]-[3] means that the
deflection of the top and bottom beams of the delaminated
region is the same, and consequently this part can be modeled
as a single beam having the sum of masses and stiffnesses of
the top and bottom beams. In accordance with the free mode
model, the top and bottom beams are independent of each
other. It was shown that this model leads to significant errors
in the free vibration frequencies (e.g. [4]), apart from that the
vibration modes involve interpenetration of the top and bottom
layers and unrealistically large curvatures. Apparently, the
constrained mode model captures better the mechanical
problem. The paper by Shen and Grady [5] presented the
comparison of the experimentally and numerically determined
free vibration frequencies. They also tried to visualize the free
vibration mode shapes by making photos on the first vibration
mode of delaminated beams. It was shown that the mode
shape is asymmetric, i.e. the eigenshape in the first half period
is not the reflection image of that in the second one if the
delamination is asymmetrically placed between the layers.
Later, numerous papers were published to capture even the
delamination opening during the vibration [6], e.g. in [7]
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nonlinear springs were applied between the top and bottom
beams of the delamination. The experimental results presented
by Shen and Grady [5] were used, and the asymmetric mode
shapes were predicted using the elastic foundation model. In
fact, the reason for the delamination opening was still
unsolved. The problem of multiple delaminated clamped and
clamped-clamped beams was investigated in [8]-[10].
Predictions for the first and second eigenshapes were
performed. The literature also presents models based on
higher-order analysis [11], [12] and finite elements [13], [14];
however, the basic assumption is that the delamination
opening occurs because of the inertia forces. The nonlinear
(large amplitude) vibration of delaminated Timoshenko beams
was investigated in [15] by considering thermal effects too.
An important effect in delaminated beams is the bending-
stretching coupling, which was discussed in [16] and it was
shown that the simultaneous consideration of the transverse
shear effect and longitudinal wave motion improves
significantly the accuracy of the model and the agreement with
the experimental results.

The main aim of this paper is to show that the delamination
opening occurs due to the buckling phenomenon, which is
governed by the internal (normal) forces appearing in the
delaminated region of the beam. In a previous work, an
analytical model based on the system of exact kinematic
conditions (SEKC) [17] has been proposed and it has been
shown that the delaminated portion is subjected to periodic
axial forces [16]. Consequently, if the internal normal force
reaches a critical value, the delamination buckles during the
vibration. This problem is the special case of parametrically
excited systems. This phenomenon takes place in railway
wheelsets [18], [19], and among others in machine tools [20]-
[22] and milling operations [23]-[25]. In the free vibration of
delaminated beams the free vibration frequency and the
frequency of parametric excitation is the same. Essentially, the
delamination opening is the result of the instability during the
vibration of the system.

In this paper, it is shown that parametric excitation exists in
the delaminated part if the delamination is embedded. The
problem is investigated by the finite element method (FEM).
First the basic field equations are presented by using Euler-
Bernoulli beam theory. Then, the FE stiffness and mass
matrices are constructed based on the potential energy of the
system. A transition element is applied in the delamination
tips to represent the kinematic continuity between the
delaminated and uncracked portions. The dynamic stability of
delaminated composite beams is carried out by using the
Bolotin’s harmonic balance method [26]. The results show
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that the delamination opening is governed by the buckling
phenomenon, which takes place if a critical vibration
amplitude is exceeded. The present formulation gives some

uncracked part

delaminated part

@ delamination @ @

new insights into the dynamic analysis of delaminated beams
and it is shown that the structural discontinuities can lead to
complex mechanical problems with nonlinear aspects.

uncracked part

top layer A

Ll a

b(}tt()ln layer
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Fig. 1 Layered composite beam with embedded delamination. Notations: (1) - left uncracked portion, (2) - left delamination tip, (3) -
delaminated portion, (4) - right delamination tip, (5) - right uncracked portion, A - beam end, B - built-in cross section, C - midpoint in the top
beam of region (3)

II. THE SYSTEM OF EXACT KINEMATIC CONDITIONS

Let us consider a layered beam with orthotropic plies and an
interfacial delamination within the plies as it is shown by Fig.
1. The length of the beam is L, the length of the delamination
is a. In Fig. 1, t; and t, are the thicknesses of the top and
bottom beams. Dividing the uncracked region on the left hand
side into two parts in the plane of the delamination and
modelling the top and bottom beams as two equivalent single
layers (ESL) involves the formulation of kinematic continuity
between the top and bottom beams. Fig. 2 (a) shows the
vicinity of the left delamination tip of the beam. We know that
the in-plane displacement function in Euler-Bernoulli beams
can be written as:

0, (%.0) =u§(x,t)—%(x,t)y“>, 0

where Ugs is the constant part of the in-plane displacement
function, Vv is the transverse deflection and o can take top or
bot (top or bottom beams), respectively (refer to Fig. 2). The
kinematic continuity between the top and bottom layers of the
uncracked region involves the following condition [17]:

u| @)

yO=—yk Iy =g-yp

where yr, YU , y®R are the positions of the global, top and
bottom reference planes, respectively. Moreover, in the neutral
(reference) plane of the uncracked part the axial displacement
is zero, the corresponding condition (depending on the ratio of
thicknesses) is:

<t,: ub| 0,

yO=ye-v8

Yr 3)

u,| =
HyO=—(Yr-yr+ty)

Equations (2), (3) are called as the system of exact
kinematic conditions (SEKC), which was introduced in [17],

[27] for the fracture mechanical analysis of delaminated
orthotropic composite plates. Note that if the lay-ups of the
whole beam and the top and bottom beams are symmetric or
the material is isotropic then yr = (t + t,)/2, Y'r = t/2, Yr =
/2, respectively.

III. DISPLACEMENT, STRAIN AND STRESS FIELDS IN
DELAMINATED EULER-BERNOULLI BEAMS

In this section, the equations of the Euler-Bernoulli beam
theory for the laminated beam shown in Fig. 3 (a) is presented.
The displacement, strain and stress fields are derived for a
further FE discretization. Only orthotropic beams are
considered when there is no coupling between the twisting and
membrane/bending action of the system.

A. Undelaminated Part

Since the deflections of the uncracked portion (K= K= V)
are the same we have the following displacement field (using

(D-G)):

dv dv

W=Or =Y s =We =Y s @
dv dv dv  dv

U :(yg)_tb_yR)&_&ymaub :(VR—YSJ))&—&V(M. (%)

The strain and stress fields, moreover the stress resultants
(by integrating the stress field) of the top beam become [28]:

d’v d*v
gxt:(y(Rt)_tb_yR)dxz _W (t)a
— d’v d*v
oy’ =C}/ ((yé‘) LY g y“’j, ©)

d?v d?v
Nxt = Allt((y(Rt) -t - yR)Wja Mxt = _Dlllma
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Fig. 2 Formulation of continuity in the uncracked beam portion by using the system of exact kinematic conditions, (a) crack tip region, (b)
condition of equal axial displacements at the interface

where Cl(l is the corresponding stiffness of the k™ layer [28].
For a beam-type geometry, it is equal to EFp (modulus of
elasticity of the k™ layer times the width (b)), for plates
E®b/(1-(v¥)),

where vy, is the Poisson’s ratio. For the bottom beam, we
obtain the following:

subjected to cylindrical bending C =

<b>)d \ d_V (b)

be = (yR X2 dX )
d v d%v
ol =CH ((VR VR G g y“’)], %)
(b) dZV
Nxb:Allb(yR )d 20 b:_Dub Ve

where A, and 0, are the membrane and bending stiffnesses of
the top and bottom beams by taking the local neutral planes as
reference planes [29]:

Zc(k)(ykﬂ Yi): By, = Zc(k)(ka ),
®)

Zc(k)(ykﬂ )9

where By; is the coupling stiffness between the bending and
membrane action [28]. For a general lay-up with orthotropic
material behavior the neutral plane of the uncracked and
delaminated parts can be obtained from the Bi; = 0 condition.
Using the stress resultants the potential and kinetic energy of
the system can be formulated for the FE discretization.

B. Delaminated Part

For the delaminated part we can simply apply the standard
Euler-Bernoulli theory [29], leading to:
y(t)j
©

& 5
¥ dx o dx? X dx  dx?

du! d?v
N,s = Auad_)fs M,s = _Dno‘w-

du® d?v [ du? d?v
_ 5 5 (&) (k) _ ~K) 5 S
B Y N O o] e’ B

The FE discretization is carried out in section IV.

IV. FINITE ELEMENT DISCRETIZATION

The vibration problem of the delaminated beam shown in
Fig. 1 is solved in this paper by using the FEM. The analytical
solution based on the SEKC requirements (Fig. 2 (a)) has been
presented in a previous work [16] using Timoshenko and
Euler-Bernoulli beams. It was shown that the periodic axial
forces acting in the delaminated portions involve a system of
Mathieu-Hill equations and a complex dynamic stability
problem with time dependent stiffness. Fig. 3 (a) shows the
stress resultants (M - bending moment, Q - shear force) and
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the normal forces (N), as well. Fig. 3 (b) shows the five
regions in the beam: (1) denotes the uncracked portion in the
left hand side, (2) refers to the left transition element, (3)
represents the delaminated beam portion with the top and
bottom beams, (4) is the right transition element, and finally
(5) shows the uncracked part on the right-hand side.
Equivalence with notations in Fig. 1 can be established. As it
was considered in (1)-(3), the in-plane displacement function
is continuous along the uncracked part and discontinuous in

a. t,

the delaminated part. Since the longitudinal wave motion is
not independent of the rotation of the cross section, transition
elements (2) and (4) are developed to establish the kinematic
relationship between the uncracked and delaminated parts, as
well as to represent the left and right delamination tips.
Finally, in the delaminated portion a regular BEAM2D
element [30] is applied with bending, membrane and coupling
actions.
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Fig. 3 Stress resultants acting in the transition zones of delaminated layered beams (a). Finite element discretization and nodal DOFs of the
layered beam with delamination (b)

The discretization is based on Hamilton’s energy principle.
The first variation of the total potential energy results in zero
[31]:

" ldt=0
5.[] t=0, (10)

where | =T —U is the Lagrange functional (in the absence of
external forces). The strain energy and the kinetic energy for a
single element can be formulated through the stress, strain,
and displacement fields:

ang— uKu
I

=y

(11)
T.=—| puudV =— uMu
e zgp !

where Q. is the element domain, p is the density, u is the

displacement vector field, u. is the vector of nodal
displacements, K. is the element stiffness matrix, M, is the
element mass matrix. The total strain end kinetic energy of the
system is obtained by summing the element quantities:

U=>U,T=>T, (12)
Ne N

where, Nc is the number of elements. The assembly of element
matrices provides the structural matrices. The application of
Hamilton’s principle and the assumption of harmonic motion
in time results in the equation of motion for the free vibration
problem of elastic structures [30]:

MU +KU =0,U = A cos(at), (13)

where A is the mode shape vector and o is the free vibration
frequency. The FE discretization of the model shown in Fig. 3
involves the development of the matrices for the following
regions:
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e uncracked parts (1) and (5) in Fig, 3 (b), the stiffness and
mass matrices,

e left and right transition elements (2) and (4) in Fig. 3 (b),
the stiffness, mass and geometric stiffness matrices,

ty

e delaminated part (3) in Fig. 3 (b), the stiffness, mass and
geometric stiffness matrices.
The matrices are presented in [32].

Fi cos(at)
By

a

<
<
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AN

Fig. 4 The top beam of the delaminated region (3) subjected to parametric excitation due to periodic axial force

V.DYNAMIC STABILITY ANALYSIS — PARAMETRIC EXCITATION

The delaminated beam portion is loaded by periodic axial
forces during the vibration. Therefore, the stiffness of the
delaminated part is locally time dependent, however - since
the forces are equal in magnitude independently of the lay-up
and the location of the delamination [3], [4], [33] - they do not
influence the free vibration frequencies and mode shapes at all
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unless the delamination buckling takes place. The local
periodic axial force is the reason for the buckling during the
vibration process, and this force induces parametric excitation
in the beam as it is shown in Fig. 4. This leads to a dynamic
stability problem, which is solved in this section. An important
constraint of the problem in Fig. 4 is the sliders allowing the
delaminated top beam to buckle only in the upward direction.
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Fig. 5 Time signals of harmonic motion and local amplitude increment in the state of delamination buckling

The equation of motion (system of Mathieu-Hill equations)
for parametrically excited discrete systems can be written as
[34]1-[37]:

MU + (K + F,K¢ cos(6t))U =0, (14)

where M and K are the structural mass and stiffness matrices,
U is the structural vector of nodal displacements, Fq is the
amplitude of the dynamic force, 6 is the frequency of
parametric excitation, K% is the structural geometric stiffness
matrix of the system [32]. If the system reaches the critical
amplitude during vibration (cross section A in Fig. 1 is
considered in this respect), then the top beam of the
delaminated part buckles and the time signal of the top
delaminated part increases by an incremental amplitude (a
small perturbation) as it is shown by Fig. 5. It has already been
shown that the normal forces in the top and bottom beams of

the delaminated parts are equal to each other [16], and hence
the global geometric stiffness during free vibration does not
influence the frequencies at all. However, locally the
geometric stiffness has to be included for the stability analysis.
Assuming an incremental displacement vector in the state of
delamination buckling of the top beam the equation of motion
modifies to:

MU + MU, + KU + KU, +(F,K cos(6t)) U, =0,(15)

where the matrices with subscript t are the mass, stiffness and
geometric stiffness matrices of the top beam of the
delaminated part. It is very important to note that the matrices
are constructed by using a constrained model [32]. Since the
system performs harmonic motion in accordance with (13) we
have:
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MU, +K,U, +(F,Kg cos(6t))U, =0, (16)

viz. the stability is carried out only locally on the top beam
using clamped-clamped conditions. The increment in the
displacement field of the top beam can be written as:

U, =®T (1), (17)

where U; is the increment of the amplitude due to
delamination buckling, @ is the eigenshape vector of
delamination buckling. In accordance with Fig. 5, the
following function represents the time dependent part of the
local amplitude increment in the top part of the delaminated
portion in a kinematically possible way:

T(t)—f (cos(at) +‘cos(at)—5cr‘)(5cr—cos(at))z, (18)

where 8¢ is the amplitude increment due to delamination
buckling, d is the critical amplitude at the end of the beam (at
cross section A in Fig. 1), A is the amplitude at the beam end
again. The first term in (18) provides a piecewise time signal
with positive amplitude increments only (the delamination can
buckle only in the upward direction), the second term ensures
the kinematically possible motion with zero slopes at the first
point of delamination opening and even when the
delamination returns and closes. When the delamination
buckling appears, the velocity of the points of delaminated
beam portion should be equal to the velocity of the global
motion at the given point of the beam. Similarly, when the
delamination closes, the velocity should be equal to that of the
global motion at the given point. This will be shown later in
the phase plane portraits. The Fourier series of the time signal
given by (18) and Fig. 5 becomes:

Tt)=a,+ y a, cos(kat),
’ kgg wcos(kat) (19)

{a,.a,} ={a,(5,).a.(5,)}.k =1,23,...

that involves odd and even indices equally. If 3. = 0, then the
bifurcation point takes place exactly when the amplitude is
zero at every point of the beam. If d.: = A, then the time signal
in (18) vanishes, and no instability occurs. The increment in
the vector of nodal displacements becomes:

U, =a, + acos kat
(=1, k; 0

a,=a,®,a, =a,d®k=123,..

The local vector of nodal accelerations is:

U, =-a’ i ak’cos(kat),k =1,2,3,... (1)

k=1,23...
Taking these back into (16) and considering the fact that the
frequency of free vibration and parametric excitation is the

same (0 = o), furthermore applying some trigonometric
identities we obtain:

K,a, +% F.Kla =0
(K -+ F K5 (2, +a,) =0 @2)
(K, -K’a’M,)a, +% FKl(a_ +a,)=0k=23,..

where Fq4 is the dynamic force amplitude. The equations in
matrix form can be given as:

K, % FK., 0 0
F.Ke K.-a'M, % F.Ke, 0 e :? g
0 % FK, K, -4a’M, % F,K, x| 3 '
0 0 % FK. K, -9a°M, N

(23)

This method is called the harmonic balance [26], and it was
applied to delaminated composite beams in [32]. The critical
value of the force amplitude, F4 can be obtained by setting the
determinant of the matrix in (23) to be equal to zero and by
taking back any of the free vibration frequencies determined
by (13). Based on the critical force and the normal force
arising during vibration with an actual amplitude the critical
amplitude of free vibration at cross section A in Fig. 1 - at
which delamination buckling takes place - can be obtained.
The buckled shape of the top beam can be obtained from any
of (22) (infinite number of solutions). However, there is a very
little difference among the eigenshapes from (22) and the first
eigenshape of static stability calculated by:

K, +1K;)U, =0, (24)

where A is the eigenvalue giving the critical force under static
buckling of the top beam in the delaminated part with
clamped-clamped conditions, Kg; is the geometric stiffness of
the top beam in the delaminated part. The amplitude increment
(34, see Fig. 5) due to buckling is determined by a condition of
constant arc length of the top beam during the vibration (see
later).

VI. EXPERIMENTS

The experiments on unidirectional glass-polyester
specimens with embedded delaminations have been carried
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out in a recent paper [16]. The main properties of the tested
beams were: Ej; = 33 GPa, p=1330 kg/m’, L = 180 mm, b =
20 mm. The total thickness of the beams was always t; +1,=6.2
mm. Four different delamination lengths were applied: a=60,
80, 100 and 120 mm. More geometric data are provided in
Table I, refer to Fig. 1, as well. The delamination was a thin
polyamid insert which was placed between the layers during
the manufacturing process. The total number of layers was 14.
On the other hand, the through-thickness position of the
delaminations was also varied. In this respect, four different
variants were used: interface 0 means that the delamination

lies in the midplane of the beams, interface 2 refers to the fact
that the top and bottom beams of the delaminated part consists
of two sub-beams with 5 and 9 layers. Consequently, interface
4 and interface 6 mean that the division of the delaminated
parts involves 3 and 11, and 1 and 13 layers, respectively. In
the sequel the beams are referred to by using the crack
length/interface code, i.e. 60/6 means the beam with crack
length of 60 mm and with a delamination at interface 6. The
natural frequencies have been determined by modal hammer
and sweep excitation tests [16].

1 Specimen
2 Delamination
3 Accelerometer

5 Clamping fixture (top part)

6 Clamping fixture (bottom part)
7 Dynamic analysator

4 Modal hammer 8 Computer

Fig. 6 Experimental setup for frequency and mode shape measurement by modal hammer test

A. Modal Hammer Test

In this test, the delaminated beams were rigidly fixed at one
end by using a clamping fixture in accordance with Fig. 6. An
accelerometer with very small mass (0.2 g) was attached close
to the free end. A modal hammer with steel head was applied
and the beam was hit by the hammer close to the built-in end
of the beam. The cables of the accelerometer and the hammer
were plugged into a Briiel and Kjaer dynamic analyser and the
measured signals were processed by a notebook. The
maximum of the impact force was between 55 and 85 N in
each case. The frequencies were determined from the peaks of
the frequency response functions [38].

TABLE I
GEOMETRY OF THE TESTED DELAMINATED COMPOSITE BEAMS

a [mm] 60 80 100 120
L, [mm] 58 46 33 24
L; [mm] 62 54 47 36

B. Sweep Excitation Test

During the sweep excitation test the configuration was
almost the same as that detailed in the former subsection.
However, in this case the clamping fixture was bolted to the
vibro-head of the exciter. A magnetic accelerometer was
placed onto the clamping fixture, while the small
accelerometer was attached to the beam end. The accelerations
in the assigned points were measured with respect to each
other, simultaneously a force excitation was generated through
the vibro-head of the exciter. The system generated the
excitation in the frequency interval of 0 Hz - 6 kHz during 30
seconds. The sweep excitation signal was provided by a
generator with constant force amplitude, and the generator was

connected to an amplifier and then to the exciter, respectively.

The displacement amplitude at the beam end (cross section
A in Fig. 1) was measured based on the accelerations and was
between 0.5 and 0.65 mm in the first frequency; however, it
decreased subsequently in higher modes because of the
constant amplitude force excitation. Finally, the natural
frequencies were read from the generated frequency response
functions.

VII. RESULTS AND DISCUSSION

A. Free Vibration Frequencies

In [16] analytical models based on Euler-Bernoulli and
Timoshenko beam theories have been presented. In this paper
we summarize the results and make a comparison to those
calculated by the FE model. The measured frequency response
functions determined by modal hammer and sweep excitation
tests are shown in Figs. 7 (a) and 8 for certain beam
configurations. The first four frequencies were identified by
the peak points in the graphs. The mode shape is also shown in
Fig. 7 (b) by color distribution. Tables II and III present the
results for the 60/0, 60/2, 60/4 and 60/6 composite beams. It is
seen that the agreement between the modal hammer test and
sweep excitation results is quite good. Considering the
analytical models, the agreement with the experiments is
better if the longitudinal wave is not considered. In the FE
model, 7 elements were applied along the uncracked and
delaminated portions for the beams with 60 and 80 mm long
delaminations, 8 elements were applied at each region for the
beams with 100 and 120 mm long delaminations. The
convergence of the frequencies was checked and it was found
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that by further increasing the number of elements the results
changed with less than 1 percent. The length of the transition
elements was 1 mm, no significant effect of the transition
element length on the frequencies was found. The FE model
gives almost exactly the same result as the corresponding
analytical model (E.-B. with longitudinal vibration) for each
frequency. The analytical and FE models overestimate the first
frequency measured from modal hammer test by 23%, the
second one by 31%, the third one by 17% and the fourth one
by 21% for the 60/0 beam. The results of the sweep excitation
test (60/0 beam) are closer to the model predictions, especially

the first frequency, where the difference is 7%. For the second,
third and fourth frequencies 23, 13 and 21% differences were
experienced. The results for the other beam configurations are
documented in [16], [32]. It has to be highlighted that better
agreement can be achieved between the experimental and
analytical/numerical results for the second, third and fourth
frequencies by considering the transverse shear effect [16]. It
is shown in the former paper, that transverse shear does not
affect fundamentally the first vibration frequency. The
possible damping effect [38], [39] was also investigated and
was found to influence the frequencies with less than 1% [40].

[dB/1.00 V/N] Frequency Response (Magnitude) 100/0
80
.
60
(63} (€%} @3 Oy
I I
| il
5 /Jkl«.-»/\f/ H\'%M
0 -
0 1000 2000 3000 4000 5000 6000
[Hz]
Frequency Response (Magnitude)
20

1°* mode 2" mode 37¢ mode

4% mode

= 12
=
= l
-0 .
[ ]
4 _
0
0 1000 2000 3000
[Hz]

4000 5000 6000

Fig. 7 Frequency response (a) and mode shape distribution by color scale (b) by modal hammer test for the 100/0 composite beam

B. Periodic Normal Forces

The distribution of the normal forces in the delaminated
beam portions are shown in Figs. 9 and 10 for the 80/6 and
120/6 beams when the vibration amplitude is 1 mm at the end
of the beams. The normal forces were calculated using (6), (7)
and (9). It can be seen that the finite element and analytical
results are basically the same. An important result is that the
normal forces are always equal in magnitude for the top and
bottom beams independently of the location of the
delamination in the through-thickness direction. This aspect -
which holds even when the lay-up of the whole, top and

bottom beams is asymmetric - has already been shown in the
literature [3], [4] based on geometrical and equilibrium
considerations. For the first and second free vibration modes
(Figs. 9 (a) and (b); 10 (a) and 10 (b)) the normal forces have
constant distributions in the delaminated parts. On the
contrary, for the third and fourth vibration modes the forces
change exponentially. These periodic forces change the
bending stiffness of the delaminated portion, and so the
stiffness becomes time dependent. However, since the forces
are always equal to each other in magnitude, globally there is
no effect of the parametric excitation on the free vibration
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frequencies; in other words, they eliminate the effect of each
other at every time moment. However, if the amplitude
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take place. It will be shown 1

reaches a critical value, then the delamination buckling can

ater, that during small-amplitude

vibration this occurs only if the top beam is very thin.
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Fig. 8 Frequency response by sweep excitation test for the 120/6 composite beam
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Fig. 9 Distribution of the normal force along the top and bottom beam axes in the case of the first four free vibration frequencies of the 80/6

beam
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TABLE I
FREE VIBRATION FREQUENCIES FOR THE (60/0) AND (60/2) COMPOSITE BEAMS IN [HZ]
60/0 60/0

Beam configuration

Free vibration frequencies [Hz] ~ Free vibration frequencies [Hz]

Method, theory o o o oy oy o o3 Oly
Modal hammer test 124 731 1737 3765 105 781 1706 3642
Sweep excitation test 142 780 1798 3776 138 790 1830 3780
E.-B. 123 659 2013 4345 128 689 2112 4469
E.-B. with longitudinal vibration 152 961 2025 4566 153 965 2153 4749
E.-B. with long. (FEM) 152 960 2025 4567 153 965 2160 4756

Note:

E.-B. - analytical solution based on Euler-Bernoulli beam theory considering transverse vibration only

E.-B. with longitudinal vibration - analytical solution based on Euler-Bernoulli beam theory considering transverse and longitudinal vibration
E.-B. with long. (FEM) - finite element solution based on Euler-Bernoulli beam theory considering transverse and longitudinal vibration

TABLE III
FREE VIBRATION FREQUENCIES FOR THE (60/4) AND (60/6) COMPOSITE BEAMS IN [HZ]
Beam 60/4 60/6
configuration Free vibration frequencies [Hz] Free vibration frequencies [Hz]

Method, theory oy o o3 o oy o o3 Oy
Modal hammer test 112 712 1891 3854 126 738 2124 4196
Sweep excitation test 136 732 1948 3940 138 718 2112 4232
E.-B. 138 765 2328 4730 148 863 2541 5011
E.-B. With longitudinal vibration 153 959 2389 5000 153 963 2610 5203
E.-B. with long. (FEM) 152 961 2400 5007 154 966 2625 5224
a. b.
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Fig. 10 Distribution of the normal force along the top and bottom beam axes in the case of the first four free vibration frequencies of the
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Fig. 11 Stability diagram of the composite beam with a=120 mm long delamination for the 1st free vibration frequency: (a) critical values of
the normal force under static and dynamic stability, (b) determination of the critical vibration amplitudes. Note: the vertical axes apply
logarithmic scales
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Fig. 12 Stability diagram of the composite beam with a=120 mm long delamination for the 2nd free vibration frequency: (a) critical values of
the normal force under static and dynamic stability, (b) determination of the critical vibration amplitudes. Note: the vertical axes apply
logarithmic scales

C. Dynamic Stability Analysis

The dynamic stability analysis of the beam configurations
was carried out based on Section V. The critical forces for the
beams at each frequency were determined by setting the
determinant of the coefficient matrix in (23) to zero. The
distribution of the normal force along the uncracked region
was considered in the construction of the K’ geometric
stiffness in (23). Since the normal force is not constant in the
case of the third and fourth frequencies, the critical force
means the value of the force at the right delamination tip. In
each case the order of the determinant was increased until a
reasonable convergence of the force was achieved (a 5%
criterion against the forces obtained by two subsequent

determinants was applied). In general, 9th - 14th order
determinants provided the required convergence. Figs. 11-14
present the stability diagrams of the beams with 120 mm long
delamination for the first to the fourth free vibration
frequencies. In Figs. 11 (a), 12 (a), 13 (a) and 14 (a) the
stability limits are shown, for the sake of completeness even
the limits under static stability (by (24)) are given. Each figure
was constructed using logarithmic scale on the vertical axis. It
is important to see that the dynamic stability limit is somewhat
less than the static one in most of the cases. The critical
amplitudes at the beam end can be calculated using Figs. 7 (b),
8 (b), 9 (b) and 10 (b). Reaching the critical amplitude means
that the top beam buckles during the vibration, and local
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stability loss takes place. Plotting the normal force-beam end
amplitude relationship (linear relation using a logarithmic
horizontal scale) and finding the intersection points by
projecting the points of Figs. 11 (a), 12 (a), 13 (a) and 14 (a)
results in the critical amplitudes. For the second, third and
fourth frequencies the stability diagrams are shown in Figs.
12-14. Based on the critical amplitudes calculated, it is
concluded that the system is the most unstable under the
fourth frequency, then under the second one. It is followed by

the first one, and the third one is the most stable (the highest
critical amplitudes are required for delamination buckling in
this latter case). For the other beam configurations the critical
forces and amplitudes are documented in [32]. The main
conclusions and the order of frequencies from the point of
view of instability are essentially the same. Note that in each
case the absolute value of the critical displacement is
presented.

A A
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, 7
Static| stability
1000 1000 -%)
> —120/6
—120/4 \
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Fig. 13 Stability diagram of the composite beam with a=120 mm long delamination for the 3rd free vibration frequency: (a) critical values of
the normal force under static and dynamic stability, (b) determination of the critical vibration amplitudes. Note: the vertical axes apply
logarithmic scales
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Fig. 14 Stability diagram of the composite beam with a=120 mm long delamination for the 4th free vibration frequency: (a) critical values of
the normal force under static and dynamic stability, (b) determination of the critical vibration amplitudes. Note: the vertical axes apply
logarithmic scales
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‘_
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Fig. 15 Delamination buckling and opening during vibration of the 80/6 beam with excitation frequency of 128 Hz (1st natural frequency),
beam end amplitude of 0.98 mm, strobe light frequency of 43 Hz

Fig. 15 shows the state of delamination buckling of the 80/6
beam in the case of the first natural frequency if the amplitude
at the free end (cross section A in Fig. 1) is 0.98 mm and the
excitation frequency is 128 Hz. The system was subjected to a
strobe light applying one third of the excitation frequency. It
can be seen how the delamination opens and buckles as the
beam moves in the upward direction. It is very important to
note that during the observation of the first eigenshape the
motion was found to be absolutely impact-free and the closure
of the delamination was a smooth transition.

D.Mode Shapes with Delamination Buckling

If the system vibrates below the stability limit (critical
amplitude) then it is governed by the model developed in
section IV. However, if the stability limit is exceeded, then the
delamination buckling takes place and the developed model is
no longer valid from the mechanical point of view. The system
becomes nonlinear and the principle of superposition is no
longer applicable. Nevertheless, considering small amplitude
vibration (1.5 - 3 mm amplitude at beam end) it is seen that
the delamination buckles only for the .../6 configurations. In
the case of the 120/6 beam, the mass of the top beam is less
than 5% of the total mass of the beam, moreover it contributes
with a negligible value to the bending stiffness of the beam.
Under these circumstances, the prediction of the mode shapes
under stability loss is possible by superimposing the free
vibration mode shape and the buckled shape, respectively. In
other words, we neglect the interaction of delamination
buckling and free vibration. The amplitude of the relative
buckled eigenshape was controlled by the arc length of the
beam. More exactly, the arc length of the local buckling
eigenshape minus the relative axial displacement of the
delamination tips was equated to the delamination length at
the end of the half period (when the highest amplitude is
reached) with two decimals accuracy.

Figs. 16 and 17 present the mode shape predictions for the
80/6 and 120/6 beams. The first four free vibration frequencies
are considered; in each case the critical amplitude is indicated
in the figures. The first free vibration mode shape has already
been predicted in numerous papers (e.g.: [5]), the second one
has been predicted in [33]; however, no approximations have
been presented for the higher vibration modes. This is

important, because the system response under excited
vibration is the superposition of the free vibration eigenshapes.
The highest relative buckling amplitude is obtained in the case
of the second natural frequency. On the contrary, under the
third frequency, the former value is very small. It can be seen
that the amplitude of instability is negative for the third and
fourth vibration frequencies. Unfortunately, it was not possible
to observe the higher eigenshapes experimentally, only the
first one. The reason for that is the experimental equipment is
based on force excitation, the force is proportional to the
square of the frequency.

To reach a reasonable vibration amplitude at the free end
(1-2 mm) under higher vibration modes significantly higher
forces are required than in the case of the first mode. In spite
of that, it can be assumed that the mode shapes presented in
Figs. 16 and 17 are close to the reality in these particular
cases. It is also clear that the nonlinear analysis is required as a
next step.

E. Phase Plane Portraits

Based on the linear prediction of the mode shapes with local
stability loss the phase plane portraits for the midpoint of the
top beam in the delaminated part (point C in Fig. 1) are plotted
in Figs. 18 and 19. Under harmonic motion, the phase plane
portraits are in fact simple ellipses. However, if the
delamination buckles then the amplitude and more importantly
the velocity of the points change significantly. It has to be
mentioned that when the critical amplitude is reached then at
the moment of delamination opening and closing the velocity
of the delamination midpoint must be the same as the
corresponding point in the bottom beam (kinematic condition).
This condition is ensured by the time signal of (18).
Depending on the bending vibration mode, the phase plane
portraits show some special trajectories. For instance, for the
80/6 beam - depending on the vibration amplitude at the beam
end - the first natural frequency involves “guitar body” and
“icecream in cone” shape trajectories, respectively (Fig. 18
(a)). In accordance with Fig. 18 (b) the “carpet-beater”
trajectory is typically related to the second free vibration
frequency. For the third and fourth frequencies the associated
shapes are “pac man”, “pincers”, and “croissant”, respectively.
The phase plane trajectories of the 120/6 beam are presented
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in Fig. 19. The midpoint of delamination provides “light bulb”
shape trajectories for the first frequency, otherwise the higher
vibration modes involve similar shapes to those given by Figs.
18 (b)-(d). The overall conclusion related to Figs. 18 and 19

Amplitude [mm)]
A

are that there are significant changes in the trajectories of the
points of the top beam undergoing delamination buckling.
This aspect of the problem was also detailed in [41] for
delaminated plates.
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Fig. 16 Mode shape prediction for the 80/6 beam for the first four free vibration frequency with delamination buckling
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VIII. CONCLUSIONS

In this paper, the free vibration problem of delaminated
composite beams was investigated. The main idea was that the
delamination opening during the vibration is induced by the
buckling phenomenon and not by the inertia forces. To prove
this assumption, a beam FE model was presented. The
formulation was based on the system of exact kinematic
conditions (SEKC) by cutting the uncracked part in the plane
of the delamination and formulating the kinematic continuity
conditions between the top and bottom beams. The
delaminated portions were modelled by traditional beam
elements. The finite element discretization was carried out
based on the strain and kinetic energy of the system. A layered
beam element was developed to capture the uncracked part
and transition elements were constructed to represent the
delamination tips as well as the kinematic connection between
the uncracked and delaminated portions. The free vibration
frequencies and mode shapes were determined in the usual
way. The most important aspect is that it was shown that the
delaminated portion is subjected to periodic normal forces
resulting in time dependent stiffness and the susceptibility to
dynamic delamination buckling during the vibration. It was

shown that the distribution of normal forces is constant for the
first and second free vibration modes, while it is exponential
in the case of the third and fourth ones.

The dynamic stability analysis of delaminated beams was
carried out by using Bolotin’s harmonic balance method. The
time signal of delamination buckling was derived in a
kinematically consistent way and it was approximated in the
form of a Fourier series. The combination of the equation of
motion and the time signal resulted in an infinite determinant
with matrix elements providing the critical values of the
normal forces in the delaminated region under the vibration
with the actual frequency. It was found that the stability limit
of normal force is constant in the function of thickness ratio,
however it decreases suddenly if the thickness ratio is very
small. It was shown that in each case there is a critical beam
end amplitude defining the bifurcation point of stability.
Below the stability limit, harmonic vibration takes place
without delamination opening; however, if the excitation of
the system induces higher amplitudes than the critical one,
then local instability is expected. Strictly speaking, nonlinear
analysis is required in the latter case for further conclusions.
Nevertheless, if the top beam of the delaminated part is very
thin, then its stiffness and mass is negligibly small and a linear

836



International Journal of Chemical, Materials and Biomolecular Sciences
ISSN: 2415-6620
Vol:10, No:7, 2016

approximation for the mode shapes and phase plane portraits
can be applied. Thus, the free vibration mode shapes and the
first buckling eigenshapes were superimposed to each other.
The phase plane portraits of the midpoint in the top beam of

V(:lr:::ity [m/s] a.
der

”light-bulb”

// \
= = U = .
A&ﬁ/ ~ )
. /'

0 r 7
&:\: N 6 = 0.5 mm

Amplitude [mm]
Velocity [m/s]

the delamination were plotted and several shapes were
discovered, respectively. Maybe, these results contribute to
understand better the dynamics of delaminated beams.
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Fig. 19 Phase plane portraits for the midpoint of the delamination (point C in Fig. 1) in the 120/6 beam for the first four free vibration
frequencies

Further analysis is required to answer the questions raised
by the present analysis. If the thicknesses of the top and
bottom layers are close to each other, then the superposition
scheme is no longer valid, a nonlinear analysis taking the
interaction between global vibration and delamination
buckling is necessary.
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