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 
Abstract—Nanoporous -Al2O3 samples were synthesized via a 

sol-gel technique, introducing changes in the Yoldas´ method. The 
aim of the work was to achieve an effective control of the 
nanostructure properties and morphology of the final -Al2O3. The 
influence of the reagent temperature during the hydrolysis was 
evaluated in case of water at 5 ºC and 98 ºC, and alkoxide at -18 ºC 
and room temperature. Sol-gel transitions were performed at 120 ºC 
and room temperature. All -Al2O3 samples were characterized by X-
ray diffraction, nitrogen adsorption and thermal analysis. Our results 
showed that temperature of both water and alkoxide has not much 
influence on the nanostructure of the final -Al2O3, thus giving a 
structure very similar to that of samples obtained by the reference 
method as long as the reaction temperature above 75 ºC is reached 
soon enough. XRD characterization showed diffraction patterns 
corresponding to -Al2O3 for all samples. Also BET specific area 
values (253-280 m2/g) were similar to those obtained by Yoldas’s 
original method. The temperature of the sol-gel transition does not 
affect the resulting sample structure, and crystalline boehmite 
particles were identified in all dried gels. We analyzed the 
reproducibility of the samples’ structure by preparing different 
samples under identical conditions; we found that performing the sol-
gel transition at 120 ºC favors the production of more reproducible 
samples and also reduces significantly the time of the sol-gel 
reaction.  

 
Keywords—Nanostructure alumina, boehmite, sol-gel technique, 

N2 adsorption/desorption isotherm, pore size distribution, BET area. 

I. INTRODUCTION 

OROUS -alumina has been extensively used in many 
different industrial applications such as catalysis and 

membrane separation processes. This material is highly 
appreciated due to its high thermal stability, chemical and 
microbiological resistance and high surface area [1]-[3]. 

Synthesis of -Al2O3 by the sol gel technique originally 
developed by Yoldas through a low temperature process, 
yields high purity materials with small pores and narrow pore 
size distributions [2], [4], [5]. Basically, Yoldas´ method 
consists in four steps: 1-hydrolysis of aluminum alkoxide, 2- 
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peptization of the hydroxide to boehmite sol, 3-sol-gel 
transition and 4-thermal treatment of the dried gel to alumina 
[4]-[7]. 

Many efforts have been made in the past to control the 
morphology of -Al2O3 during the sol-gel process. It is well 
known that water/alkoxide and acid/alkoxide molar ratios and 
temperature of the hydrolysis reaction are the most important 
factors affecting the structure and morphology of the final 
product [4], [6], [7]. Several studies have been reported on 
synthesis conditions; such as type of acids [4], use of cationic 
exchange resins [1], acid concentration [4], [5], and also 
hydrothermal treatment on boehmite films [2]. These works 
demonstrated how some of the different synthesis conditions 
modified the nanostructure of the final -alumina. 

In our laboratory, γ-alumina has been traditionally 
synthesized by the original Yoldas´ method. Aluminum sec-
butoxide is hydrolyzed to get a sol of boehmite, which is then 
peptized by adding nitric acid, to give place to a stable 
particulate sol. The sol gel transition is conducted in an oven 
at 120ºC and afterwards the xerogel of boehmite is treated at 
600°C for 4 h to yield nanoporous -Al2O3 with high surface 
area. 

The aim of this work was to introduce some modifications 
in the traditional -Al2O3 synthesis in order to improve the 
control of structure parameters such as surface area, total pore 
volume, porosity and pore size distribution of the samples.  

II. EXPERIMENTAL 

The present work was focused on the hydrolysis and sol-gel 
transition steps. For this purpose, hydrolysis reaction was 
performed with reagents, i.e., both water and alkoxide, at 
different temperatures. Gelation reaction was conducted at 
room temperature and 120 ºC. 

A. Sample Preparation 

Fig. 1 shows a scheme of the general procedure. As 
indicated, aluminum-tri-sec-butoxide diluted with sec-butanol, 
was used as precursor of the hydrolysis reaction; a mass ratio: 
1/2 alkoxide/dry alcohol was used. 

Hydrolysis was carried out by addition of the 
alkoxide/alcohol solution into an excess of Milli-Q water (100 
water/alkoxide molar ratio). Initial temperature of the 
hydrolysis reagents and the temperature of the gelation 
process were different in the preparation of each sample. A 
reference sample was prepared by following the standard 
Yoldas´ method (REF). 
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Fig. 2 DTA/TG curves of boehmite gel samples 

B. X-Ray Diffraction (XRD) Patterns of the -Al2O3 Samples 

In Fig. 3, XRD patterns from boehmita gel samples are 
compared. It is well known after Yoldas´ studies that 
hydrolysis performed with hot water (> 80 °C) gives place to 
formation of crystalline boehmite whereas with cold water, 
produces an amorphous hydroxide. This hydroxide can 
transform to boehmite when heated at temperatures above 80 
°C for 3 or 4 h, or to bayerite when is kept at lower 
temperature [4], [6], [7]. In our case, the heating of reagents 
started immediately after mixing the reagents and the reaction 
temperature (>75 ºC) was reached before 2h. 

All XRD patterns showed structures consistent with 
boehmite phase; thus indicating that if the reaction 
temperature (>75 ºC) is reached soon enough after mixing, the 
gel phase can be controlled independently of the original 
reagent temperatures. This result demonstrates that the initial 
temperature of the reagents is not the determining parameter 
of the product of the hydrolysis.  

Using cold water however prevents any explosion reaction 
because of the lower thermal shock between reagents. 
Moreover, the lower vapor production when water is not 
boiling, avoids that hydrolysis occurs before the alkoxide 
reached the liquid water. That facilitates the alkoxide addition 
into the reactor vessel. 

The XRD patterns of all samples shown in Fig. 4 are 
consistent with the gamma-alumina phase. This fact gives 
further evidence to the conclusion that the product obtained in 
all hydrolysis was boehmite. The identical width of the 
primary peaks (46º and 67º) in all -Al2O3 samples indicates 
the presence of crystallites with similar size, according to the 
Scherrer equation. 

C. Nitrogen Adsorption Characterization of Nanostructure 
of -Al2O3 

The nitrogen adsorption/desorption isotherms of the -Al2O3 
samples are presented in Fig. 5. These isotherms correspond to 
type IV under BDDT classification, and show capillary 
condensation in the mesopore range (20-500 Å). Hysteresis 
loops are type H2 (p/p0 = 0.4-0.9) that represents a globular 
morphology, where big cavities are connected to the outside 
by small throats, known as ink-bottle pores. These results are 

in agreement with those of Quattrini et al. [2]; the authors 
found that the crystallinity of the boehmite, that determined 
the pore morphology of the -Al2O3, is related to the 
temperature of the sol-gel transition. In our experiments, both 
RT and TC conditions, gave place to low-crystalline boehmite 
(Fig. 2), which is responsible of the globular morphology 
found (Fig. 5). 

 
TABLE II 

NANOSTRUCTURE PROPERTIES OF -AL2O3 SAMPLES 

Sample Results 
BET 

(m2/g)
Pore Total  

Volume (cm3/g) 
Mean Pore 
Size (A) 

Porosity (%) 
(*) 

a) b) 

A98RT 
Average 269 0.38 56.78 57 60 

SD 28 0.03 0.94 3 2 

A5RT 
Average 280 0.38 54.05 57 59 

SD 38 0.03 4.85 2 2 

A98TC 
Average 253 0.39 61.17 57 60 

SD 6 0.01 0.08 1 1 

A5TC 
Average 253 0.39 61.17 57 60 

SD 5 0.01 0.18 0.4 0.4 

REF 
Average 263 0.39 59.75 58 61 

SD 2 0.02 3.96 2 2 

  

Media 263 0.38 58.58     

SD 12 0 3 

CV (%) 4 1 5     

(*)  Porosity a) was calculated considering δ= 3.5 g/cm3 and b), δ= 3.9 
g/cm3. 
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Fig. 3 XRD patterns of boehmite obtained with hot (98 ºC) and cold 
(5 ºC) water 

 

The nanostructure properties of all -Al2O3 samples are 
listed in Table II. A comparative analysis of the values of BET 
area, pore total volume and mean pore size show that the 
differences among all samples are less than 5%, and porosity 
ranges 57-60%. This little deviation of the results for all 
different preparations, suggests that the modifications 
introduced in this work have no appreciable effects in the final 
-Al2O3 nanostructure. 
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Fig. 4 XRD patterns of the -Al2O3 samples 
 

Values of all properties and their standard deviations of 
Table II refer to the mean value and dispersion of the two (or 
three) samples prepared under identical conditions as it was 
explained in the experimental description. Mean and standard 
deviation values of BET surface areas are plotted in Fig. 6. 
The standard deviation of BET areas for samples A5RT and 
A98RT is one order of magnitude higher than that for samples 
A5TC, A98TC and REF. This difference could be related with 
water evaporation when the sol-gel transition proceeds at 
120°C, which would give more stable reaction conditions than 
room temperature and consequently more reproducible results. 
Therefore, BET surface area is sensitive to the temperature of 
sol-gel transition. 
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Fig. 6 Statistics results of BET surface area of samples 
 
Pore size distributions, calculated by derivation of the pore 

volume adsorbed or desorbed with respect to the pore size, are 
represented in Figs. 7 and 8. As the morphology of the pores is 
ink-bottle-like, the pore size distributions obtained from the 
adsorption branch of the nitrogen isotherm (Fig. 7) are broader 
than those obtained from the desorption branch (Fig. 8). 
Moreover, the differences in pore size distribution among 
different samples prepared under identical conditions, are 
more evident in desorption than in adsorption. Our BET 
surface area results indicated that those differences are more 
important for RT that TC samples. 

The higher reproducibility observed for TC samples 
regarding BET area and pore size distribution could be 
explained by the effect of capillary pressure on the obtained 
xerogel and subsequently on the pore structure of the final -
Al2O3. As capillary pressure exerted by water evaporation is 
directly related to the temperature, the system would evolve in 
a more controlled way when the reaction proceeds at 120 ºC. 
If the xerogel is constituted by uniform particles, TC 
conditions could be useful to control the particle network, thus 
achieving a more uniform pore distribution when comparing 
samples prepared under equivalent conditions [8]. 

The use of cold reagents facilitates handling and prevents 
the reaction being initiated by the presence of boiling water 
vapor outside the liquid phase. This provides an operational 
advantage and does not alter the final nanostructure of -
Al2O3, as long as the reaction temperature above 75 ºC is 
reached soon enough. 

Our results showed that although -alumina structure is not 
affected by sol-gel transition temperature, performing the 
reaction at 120 °C improves the reproducibility of the samples 
and significantly reduces the time of the sol-gel reaction. 
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Fig. 7 Pore size distribution of -Al2O3 samples from adsorption branch 
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Fig. 8 Pore size distribution of -Al2O3 samples from desorption branch 
 

IV. CONCLUSIONS 

We have studied the influence of the temperature in two 
steps of Yoldas´ method for synthesis of -Al2O3 on the 
nanostructure of both the intermediate gel and the final 
alumina. 

Our results showed that the initial temperatures of 
alkoxide/alcohol solution and water as well as the sol-gel 
transition temperature have no significant effects on the -
Al2O3 nanostructure. The nanostructure of all -Al2O3 samples 
presented similar properties such as BET surface area and pore 
size distribution.  

Handling the reagents at low temperature represents an 
experimental advantage during hydrolysis and does not affect 
the formation of boehmite if the reaction temperature is 
reached within two hours. 

Although the temperature of the sol-gel transition does not 
affect the final alumina structure, performing the reaction at 
120ºC has proved to produce more reproducible samples and 
to reduce the sol-gel reaction time. 

ACKNOWLEDGMENT 

The authors would like to thank L. Sorda Balaguer and V. 
Vargas for ASAP 2020 measurements. 

REFERENCES 

[1] M.A. Dimitrijewits de Albani and C.P. Arciprete, “A study of pore size 
distribution and mean pore size on unsupported gamma-alumina 
membranes prepared by modifications introduced in the alkoxide 
hydrolysis step”. J. Mem. Sci., vol 69, pp. 21-28. 1992. 

[2] D. Quatrini, D. Serrano, S. Perez Catán, “Modifications in the 
microstructure of alumina porous materials by hydrothermal treatment”, 
Gra. Mat., vol. 3, pp. 125-139. 2001. 

[3] M. Akia, S. M. Alavi, M. Rezaei, Z. F. Yan. “Optimizing the sol-gel 
parameters on the synthesis of mesostructurenanocrystallineγ-Al2O3”. 
Mic. Mes. Mat., vol. 122, pp.72-78. 2009. 

[4] B.E. Yoldas, “Alumina Sol Preparation from Alkoxides”. Cer. Bul., vol. 
54, no. 3, pp. 289-290. 1975. 

[5] B.E. Yoldas, “Alumina gels that from porous transparent Al2O3”. J. Mat. 
Sci., vol. 10, pp. 1856-1860. 1975. 

[6] B.E.Yoldas, “Hydrolysis of Aluminium Alkoxides and Bayerite 
Conversion”. J. Appl. Chem. Bio., vol. 23, pp. 803-809. 1973. 

[7] B.E. Yoldas, “Effect of Variations in Polymerized Oxides on Sintering 
and Crystalline Transformations”, J. Ame. Cer. Soc., vol. 65, no. 8, 
pp.387-393. 1982. 

[8] J.Brinker and G.W. Scherer, “Sol-Gel Science. The Physics and 
Chemistry of Sol-Gel Processing”. USA, CA: Academic Press, INC., 
1990. 

 
 


