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 
Abstract—This paper presents equivalent circuit modeling of 

active planar reflectors which can be used for the detailed analysis 
and characterization of reflector performance in terms of lumped 
components. Equivalent circuit representation has been proposed for 
PIN diodes and liquid crystal based active planar reflectors designed 
within X-band frequency range. A very close agreement has been 
demonstrated between equivalent circuit results, 3D EM simulated 
results as well as measured scattering parameter results. In the case of 
measured results, a maximum discrepancy of 1.05dB was observed in 
the reflection loss performance, which can be attributed to the losses 
occurred during measurement process. 
 

Keywords—Equivalent circuit modelling, planar reflectors, 
reflectarray antenna, PIN diode, liquid crystal.  

I. INTRODUCTION 

QUIVALENT circuit representation of antenna provides a 
deep insight for the investigation of different factors that 

affect the performance of the antenna. Reflectarray is one of 
the high gain, low cost and low profile antenna that consists of 
a planar reflector and feed horn. This type of antenna is in 
introduced in 1963 [1] and is considered as a potential 
alternate for the bulky parabolic reflector antennas as well as 
expensive phased arrays.  

The performance of a reflectarray antenna is governed by 
the efficiency of the passive or active planar reflector design. 
In order to steer the main beam of an active planar, the 
reflected phase from each of the resonant element can be 
controlled. Hence, the reflected beam can be directed in the 
desired direction which makes a reflectarray capable of 
achieving a wide-angle electronic beam scanning. Such beam 
forming approach can have many advantages over traditional 
tunable antenna array architectures, including a major 
reduction in hardware required per element and increased 
efficiency [2]. There have been a considerable research in 
beam steering antennas such as the use of non-linear dielectric 
materials [3]-[5], the integration of Radio Frequency Micro 
Electro Mechanical Systems (RF MEMS) as switches [6], [7] 
and using aperture coupled elements where the tuning circuit 
can be located on the non-resonating surface of the element in 
order to control the contributed phase from each element [8]. 

Equivalent circuit modelling and analysis of passive 
reflectarrays designed with different dielectric substrates were 
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presented in [9]. This work is based on the similar concept, 
however a thorough analysis was carried out for active planar 
reflectors designed with resonant elements integrated with PIN 
diodes for beam switching and use of liquid crystals for 
frequency tuning. 

II. BASIC THEORY 

Reflectarrays with different materials were designed and 
simulated with lumped components in [9]. The work presented 
in [9] was based only on the passive reflectarray antenna 
design while in this work active reflectarray antenna 
equivalent circuit modelling has been established. The values 
of the lumped components for both passive and active 
reflectarrays can be calculated by the following relationships.  
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where, ηr=377Ω is the characteristics impedance of vacuum 
and σr is the phase derivative at fr. The value of the resistor 
can be approximately calculated by: 
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where, Гr is the reflection coefficient at the resonant frequency 
fr. The above equations were used for the calculation of the 
values of R, L and C which were then used in the equivalent 
circuit.  

III. EQUIVALENT CIRCUIT ANALYSIS OF PIN DIODES BASED 

DESIGN 

Equivalent Circuit analysis of PIN diodes embedded planar 
reflectors was carried out using commercially available 
computer model of MULTISIMV10 in order to investigate the 
reflectarray performance based on lumped components 
characteristics. The design proposed in this work comprises of 
a slot and gap embedded patch element. Rectangular slot in 
the centre of patch element with a vertical gap on the patch 
surface was used for investigation of passive and active 
reflectarray characteristics. Extra capacitance and resistance 
have to be added in the circuit design given in order to 
represent PIN diode embedded unit cell planar reflector. Fig. 1 
shows the circuit design after embedding the PIN diode. The 
value of the extra capacitance and resistance depends on the 
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