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Abstract—The operational life of rotating machines has to be 

extended using a predictive condition maintenance tool. Among 
various condition monitoring techniques, vibration analysis is most 
widely used technique in industry. Signals are extracted for 
evaluating the condition of machine; further diagnostics is carried out 
with detected signals to extend the life of machine. With help of 
detected signals, further interpretations are done to predict the 
occurrence of defects. To study the problem of defects, a test rig with 
various possibilities of defects is constructed and experiments are 
performed considering the unbalanced condition. Further, this paper 
presents an approach for fault diagnosis of unbalance condition using 
Elman neural network and frequency-domain vibration analysis. 
Amplitudes with variation in acceleration are fed to Elman neural 
network to classify fault or no-fault condition. The Elman network is 
trained, validated and tested with experimental readings. Results 
illustrate the effectiveness of Elman network in rotor-bearing system. 
 

Keywords—Elman neural network, fault detection, rotating 
machines, unbalance, vibration analysis. 

I. INTRODUCTION 

HE earliest known type of breakdown maintenance was 
run-to-failure, where the machine was forced to run until 

the occurrence of fault. A sizeable portion of the total cost to 
be attended by this traditional process is considered as rather 
expensive. It is surprising to visualize how much of present 
day maintenance activity is of this type. Eventually, 
maintenance people hit on the thought of periodic preventive 
maintenance, where machines are disassembled and 
overhauled on accepted schedules. The assumption is that 
when machines are renovated before their predictable life, 
they do not stop service. Predictive maintenance has become 
popular in the last decade, where the machine is repaired only 
when it is recognized with a fault. Among the available 
predictive maintenance techniques, condition monitoring was 
used universally. Analysis of machines using vibration 
analysis is a versatile process among condition monitoring 
techniques.  

Imbalance results when the center of the mass of a rotating 
component does not coincide with the center of rotation. It is 
practically impossible to fabricate a system which is perfectly 
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balanced; hence, unbalance is a relatively common condition 
in rotating machines. The causes of unbalance can be due to 
excess of mass on one side of the rotor, material defects, 
aerodynamic forces, and changes in temperature. Excessive 
bearing wear, fatigue in supports, losses in power and 
disturbances occur due to the presence of unbalance. Heavy 
vibration occurs radially at 1X harmonic of the running speed 
and being predominant one compared to other harmonics. The 
reliable estimation of the state of the rotor unbalance 
combining amplitude and phase from a single run-down in a 
possible procedure is explained and suggested by [1]. Further, 
the interaction between friction induced vibrations and self-
sustained lateral vibrations caused by mass-unbalance in an 
experimental rotor dynamic set-up is stated clearly [2]. 
Investigation is performed using numerical and experimental 
bifurcation analyses and the result illustrates a higher level of 
mass-unbalance, which generally increases lateral vibrations. 
A neural network simulator is developed and its usage for 
fault prediction of rotating machinery is illustrated with the 
help of back propagation learning algorithm [3], adaptive 
resonance theory (ART) and the learning strategy of Kohonen 
neural network (KNN) [4]. The success rate of network is also 
evaluated and compared with other networks. The purpose of 
neural networks and their applications can be extended 
towards condition monitoring of bearings [5], dynamic 
behavior of rotating systems [6]. The presence of vibration in 
a mechanical system is predicted, trained and tested using the 
backpropagation neural network for different amplitudes with 
variations in acceleration [7]. Investigation has been done to 
compare the performance of bearing fault detection using the 
various types of artificial neural networks and its relative 
effectiveness have been illustrated in detail [8], [9]. A neural 
network approach has been employed for detecting the 
rotating machinery faults using the feed forward neural 
network with the nonlinear neurons which can diagnose more 
than 40 faults in the system [10], using a proposed Elman 
Neural Network (ENN) [11], [18]. A cost effective method is 
based on ENN for predicting the anti-germ performance in 
detergents [15]. The following sections of this paper discuss 
the diagnosis of unbalance in a single disk rotor-bearing model 
using frequency domain and ENN. 

II. EXPERIMENTAL SETUP 

The experimental setup shown in Fig. 1 consists of an AC 
motor, a self designed coupling, a single-disk rotor. The rotor 
shaft of length 900 mm is supported by three pillow radial 
bearings of bearing span of 500 mm from the non drive end 
and another span of 200 mm from the coupling end. The 
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diameter of rotor shaft is 12 mm holding a disk of outer 
diameter 50 mm, weighing 886 grams with provision for 
introducing unbalance is mounted on the mid-way of the 
bearing supports [12]. The necessity of self designed coupling 
is to differentiate between the driver and driven unit of test rig. 
The bearing pedestals and motor support are firmly mounted 
on steel base plates. Using radial screws, the disk is fixed on 
the rotor shaft and the variation of speed is measured using 
tachometer. 

 

 

Fig. 1 Experimental setup 

A. Instrumentation Used 

The instrumentation used in the experiments includes a non-
contact accelerometer with voltage range of ±5 V, dynamic 
range of over 100 dB. Data rates on input channels of USB-
9233 range from 2 to 50 kHz, and with a sensitivity of 0.9 g. 
An effective continuous signal extraction system is developed 
for monitoring the rotor signatures using LABVIEW software 
with NI sound and vibration tool kit. The extracted signals are 
diagnosed with the help of time domain analysis like RMS and 
PEAK to PEAK and frequency domain analyses like power 
spectrum analysis. 

B. Error Back Propagation Algorithm  

Error back propagation algorithm consists of two passes 
through different layers of network: A forward pass and a 
backward pass. In the forward pass, input vector is applied to 
the input node of network, and its effect propagates through 
the network layer by layer. Finally, a set of outputs is 
produced as actual response of the network. The synaptic 
weights of networks are fixed during forward pass. The 
backward pass starts at the output layer by passing error 
signals leftward through the network and recursively 
computing the local gradient for each neuron. This permits the 
synaptic weights of network to be all adjusted in accordance 
with an error-correction rule. The algorithm is stopped when 
the error has become small and within the set tolerance error 
value. Finding the best set of weights and biases for the neural 
network is the objective of training and is an iterative process. 
For each iteration, back-propagation algorithm computes a 
new set of neural network weight and bias values generates 
output values which are closer to the target values. So, Back-
propagation algorithm calculates the gradient of the error and 
then propagates the error backward through the network for 
modifying the weights and biases [13], [17]. 

C. ENN 

A recurrent network [14] has a context layer containing 
context units with a fixed weight of 1 such that contents of 

hidden layer are copied to context layer on a one-to-one basis 
[11], [13], [16] is shown in Fig. 2 called ENN. The context 
units save previous output values of hidden layer neurons and 
are fed back fully connected to hidden layer neurons and 
hence serve as additional inputs to the network. The operation 
of network is performed with the current input from input 
layer along with neurons saved in the context layer and passed 
to hidden layer, which processes them and passes to output 
layer. In this paper, neural networks have been used to 
perform fault diagnosis based on extracted information 
features. Back propagation algorithm (BP) is used as a 
learning algorithm as it is straightforward for implementation 
and, most importantly, often performs well in comparison to 
other methods [8]. The neural network has been developed in 
MATLAB.  
 

 
Fig. 2 ENN 

D. Training, Modelling and Simulation of ENN 

ENN is trained and supervised using the Error Back 
Propagation algorithm which updates inputhidden, hidden
output, and contexthidden weights to reduce the difference 
between the output of the output layer and the desired output 
for various levels of unbalance. The desired outputs are 
necessary and serve as a reference to calculate errors. The 
algorithm stops when the error is of negligible value and lies 
within the set tolerance error value. Modelling and simulation 
of the Elman Network are executed using MATLAB and the 
architecture of the ENN and its parameters is shown in Table 
I. For binary inputs, the data may be represented in binary 
form (0, 1) or bipolar form (-1, 1). The output of a neuron 
depends on factor ‘input x weight’. If input is ‘0’ then output 
may be of a small value and Gradient may be constant which 
results in a long period of Convergence or the total absence of 
any convergence implies learning can be improved that if 
input is in the bipolar form (1,-1). Back propagation network 
with n different weights w1, w2, .., wn, and the i-th correction 
for weight wk is given by 

  
∆wk (i) = − γ ∂E ∂wk + α ∆wk (i − 1)                   (1) 

 
where γ and α are the learning rate and momentum factor 
respectively. Accelerating the convergence to a minimum of 
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the error function can be done by increasing the learning rate 
up-to the optimal value. Reduction in oscillations occurs due 
to the introduction of a momentum rate during the process of 
iteration. The best possible convergence can be achieved by 
either trial and error or a random search of tuning the learning 
parameters. Since the optimal parameters are highly dependent 
on learning task, no general strategy can be developed to deal 
with this kind of problems. When the learning rate is less, 
progress of learning is very slow with high accuracy. More 
oscillations in error are produced with low accuracy and fast 
convergence, when the learning rate is high.  

E. Input Parameters for NN 

Three levels of unbalance (0.032, 0.064, 0.096 gr) are 
introduced at a radius of 30 mm in the rotor disk. All 
experiment tests were conducted at speeds of 500 rpm, 1000 
rpm, 1500 rpm and 2000 rpm respectively to record the 
acceleration at bearing locations. For each speed, 1024 
samples are extracted per second using NI USB-9233 
accelerometer. Parameters of vibration are extracted from the 
bearing locations in the vertical direction. The network is 
modelled as a two-class problem, trained and tested 
accordingly, which informs the presence or absence of any 
fault. Among the captured vertical signal data sets from the 
bearing location, (1024 x6) data set were used for training and 
remaining (1024 x3) data sets were used for testing of the 
network at 900 rpm, three different location of unbalance 
plane. The analysis is conducted for learning rates of 0.1, 0.2 
and 0.3. Even for a learning factor of 0.2, there is no 
convergence of results and the error is high. Oscillations of a 
large number are witnessed when the learning rate is high. The 
momentum factor is introduced to make the learning faster by 
arresting the oscillations. When it is set lesser than 0.9 the 
convergence is very slow or does not converge. In this 
research work, the learning rate is set to be 0.1 and momentum 
factor is set to be 0.9. The number of hidden layer neurons 
plays a vital role in the performance of the diagnosis. There is 
no hard and fast rule for finalizing the number of hidden layers 
neurons. If more number of neurons is present, the 
calculations of error may take time and the rate of 
convergence could be slower.  

 
TABLE I 

ARCHITECTURE OF ENN 
Number of Input Neurons 1 

Number of Output Neurons 2 

Number of Hidden Layers 1 

Number of Hidden Neurons 
Varied to find optimum  

(3,5,7,9,11,13,15) 

Activation  
Function 

Input Hidden Layer TAN Sigmoid 

Output Layer Linear 

Performance function (error) MSE (Mean Square Error)

Training Algorithm Back Propagation 

Learning Rate 0.1 

Momentum factor 0.9 

 
Accuracy is not possible when the number of hidden 

neurons is less than 3 that is why the hidden neuron starts 
from 3 and is increased later to 5,7,9,11,13 and 15. When the 

number of hidden neurons goes beyond 11, the number of 
epochs (learning time) is much more. Considering the above 
discussed aspects the architecture of neural network is 
designed and shown in Table I. 

III. RESULTS AND DISCUSSIONS 

The effects of unbalance are investigated using a test rig as 
shown in Fig. 1. The shaft must first be balanced manually. 
After achieving a perfect balance in offline conditions, a base 
line data is generated at an aligned condition which can be 
used for further comparison after introducing unbalance. 
Spectral comparisons are made across the three bearing 
stations. The variation of spectrum is illustrated in Fig. 3 for 
variation of unbalance. Fig. 3 illustrates the spectrum of 
acceleration at a speed of 4000 rpm for various unbalance with 
rotor at the mid of two bearings. The maximum magnitude of 
acceleration occurs in range of 75-85 Hz with a value of 0.35 
m/s2, 0.42m/s2, 0.45 m/s2 for 4000 rpm with 0.032 gr, 0.064 
gr, 0.096 gr of unbalance variation respectively. The 
maximum magnitude arises still earlier in comparison to the 
previous condition as unbalance is varied. For each condition 
the amplitude of vibrations is measured and is plotted where 
the horizontal axis is frequency in orders of RPM. Speed 
seems to have the most dominant effect on vibration spectra 
and severity. The various acceleration spectrums are shown in 
Figs. 3 (a) and (b) for rotor at the middle of two bearings with 
varying amount of unbalance for different speeds. The 
spectrum of test rig without any unbalance is taken as base 
spectrum for further comparison with varying unbalance. Fig. 
3 shows the spectrum has 1X components predominant one 
which is due to presence of unbalance. The experiment is 
conducted for 13 different varying speeds, 60% data is 
considered for training of network, parameters for 20% is 
considered for testing, parameters for 20% is considered for 
validating network. The developed NN model comprises of 1 
input neurons, 3/5/7 hidden neurons and 2 output neurons, 
weighting factor W1 is either 3x3 or 3x5 or 3x7, bias function 
is 3x1 or 5x1 or 7x1, activation function is TAN Sigmoid, 
weighting factors W2 is 3x2 or 5x2 or 7x2 and bias function is 
2x1 and linear activation function. 

 

 

(a) Unbalance 0.032 gr 
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(b) Unbalance 0.064 gr 
 

 

 

(c) Unbalance 0.096 gr 

Fig. 3 Spectrum of acceleration for various unbalance 
 

TABLE II 
NETWORK OUTPUT 

No of Hidden 
Neurons 

3 5 7 9 11 

 Actual Classes 
Predicted 

Classes 
0 1 0 1 0 1 0 1 0 1 

0 0 0 0 29 0 10 0 4 0 43 

1 28 996 30 965 28 986 26 934 28 952 

Precision 0 0.97 0 0.97 0 0.97 0 0.97 0 0.97

Sensitivity 0 1 0 0.97 0 0.99 0 1 0 0.96

Specificity 1 0 0.97 0 0.99 0 1 0 0.96 0 
Mean Square 

Error 
0.093785 0.0471 0.047911 0.061533 0.093644 

Accuracy 0.97 0.97 0.96 0.97 0.93 

Epochs 991 996 998 999 1000 

 
The performance of the developed neural network model 

was tested using data generated by MATLAB. The set of input 
values which are used to train the network is around (1024 x 
6) and for testing around (1024 x 3). The performance for each 
hidden layer is studied and its performance curves are shown 
in Fig. 4 and it is tabulated in Table II. The setting of different 
values to network parameters and the effects are presented in 
Table II. The convergence is shown in Fig. 5. The accuracy is 

also computed on the basis of the number of instances in 
which classification is correct. An accuracy of 97% is 
achieved with 5 hidden neurons with 0.0471 mean square 
error at 996 epochs. In the case of 7 hidden neurons, the 
accuracy is 96.67% at 998 epochs with the same mean square 
error. Though both 5 and 7 hidden neurons provide the same 
value of mean square error, but the training time for 7 is 
greater than 5, hence the optimized result of unbalance is 
provided by the network with 5 hidden neurons.  
 

 

(a) NH-3, Epochs-991 
 

 

(b) NH-5, Epochs-996 
 

 

(c) NH- 7, Epochs-998 
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(d) NH- 9, Epochs-999 

Fig. 4 Training Curves for different hidden neurons 
 

 

Fig. 5 Performance curve of network model 

IV. CONCLUSIONS 

A test rig with various possibilities of defects is constructed 
and experiment is performed and investigated. The results are 
validated with respect to the vibration severity chart. The 
reasons for unbalance are discussed in this paper. This paper 
presents a procedure for identification of the unbalance using 
an artificial neural network. Based on neural network results 
the optimum results are achieved when number of hidden 
neurons is 5, learning rate is 0.1 and momentum factor is 0.9. 
ENN classifies the presence of fault or no fault in system for 
all the hidden neurons. Classification of fault is accurate and 
precise when the network possesses 5 hidden neurons, 0.0471 
as mean square error and 996 epochs. Vibration analysis can 
determine the excitation forces in a machine during its 
processes. These forces are dependent upon machine 
condition, and knowledge of their characteristics and 
interactions allows diagnosis of a machine problem. The 
efficiency and effectiveness of classification are based on 
faster convergence and accuracy.  
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