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Abstract—In this paper, we describe a Mixed-Initiative Operational
Model (MIOM) which directly intervenes on the state of the
functionalities embedded into a robot for Urban Search&Rescue
(USAR) domain applications. MIOM extends the reasoning
capabilities of the vehicle, i.e. mapping, path planning, visual
perception and trajectory tracking, with operator knowledge.
Especially in USAR scenarios, this coupled initiative has the main
advantage of enhancing the overall performance of a rescue mission.
In-field experiments with rescue responders have been carried out to
evaluate the effectiveness of this operational model.
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I. INTRODUCTION

URBAN Search & Rescue (USAR) robots play a crucial

role in assisting first disaster responders [1]–[3]. Such

robots can go where rescue workers are not allowed [2]. They

can provide responders with a preliminary assessment of the

conditions of the disaster area in which they are deployed [1].

In the last decade, robots participated in the rescue and

recovery operations of many past and recent devastations, such

as the 2001 World Trade Center (WTC) collapse [4] (see Fig. 1

(a)), the 2004 Mid Niigata earthquake in Japan [5], the 2005

Hurricanes Katrina, Rita, and Wilma in the United States [5]

(see Fig. 1 (d)), the 2011 Tohoku earthquake and tsunami

in Japan [6], [7] (see Fig. 1 (b)) and the 2012 Mirandola

earthquake in the Emilia-Romagna region, Northern Italy [8],

[9] (see Fig. 1 (c)).

Robots deployment in real rescue operations is nowadays

possible due to the countless technological advances over

the last decades in robotics aiming to improve the

capabilities of these systems. References [5]–[7], [9], [10]

have highlighted that one of the key attributes which

makes robots effective for USAR domain applications is

the semi-autonomous control. Semi-autonomous control is

an operational mode which allows for task sharing between

robots and operators [11]–[13]. Under this setting, the robot

focuses on low level tasks whereas the human operator is in

charge of high-level control and supervisory tasks [14]–[16].

However, although semi-autonomous control improved robot

performance, enhancing both the operator situation awareness

and human-robot interaction [4], [17], [18], it does not

provide the operator with any form of interaction which

also extends the reasoning capabilities of the robots. In

large-scale environments the robot might not be able to
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Fig. 1 (a) A view of the Inuktun micro-VGTV robot being inserted into a
sewer pipe at the World Trade Center site in an attempt to locate an entry to
the basement; (b) Quince robot into the upper floors of the nuclear reactor

building at the troubled Fukushima-Daiichi Nuclear Power Plant after
tsunami waves disabled the reactors’ power supply and cooling system.

With radiation levels too high and dangerous for human workers, Quince
was used to gather vital information; (c) Tracked vehicle Absolem assessing

structural damages in San Francesco church, Mirandola, Italy; (d)
Man-packable UAVs used to search portions of Mississippi during the

hurricane Katrina response

autonomously find a path toward a target position due to either

the high dimensionality of the searching space or the lack of

information about the surrounding. Under semi-autonomous

control, an operator can recover from such a stalemate only by

manually operating the robot. Conversely, the operator might

intervene directly on the path planning system of the robot

by either limiting the area within which to search the path

or filling the missing information with his/her knowledge.

This initiative might effectively reduce the computational

complexity of path planning.

In this paper, we describe a MIOM which enhances

the reasoning capabilities of the robot, i.e. mapping, path

planning, visual perception and trajectory tracking, with

operator knowledge. Similar to a semi-autonomous control

mode, MIOM incorporates operator activities into the control

cycle involving both robot perception and execution. It

interconnects human feedback with robot perception to build

up a common ground for reasoning. Moreover, it constraints

robot inference with human decisions.

The paper is organized as follows. The next section briefly
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summarizes related work. Section III introduces MIOM.

Section IV describes the development of the proposed

operational mode on a real rescue robot. Finally, Section V

describes the in-field experiments, with rescue responders,

which have been carried out to evaluate the effectiveness of

MIOM.

II. RELATED WORK

A collaborative-shared control strategy that combines

the operator abilities with robotic-based tasks has been

proposed in [19]. In this strategy, the Collaborative Control

component of the robot architecture is responsible for

allowing operator intervention when the robot is facing

complex situations, whilst the Shared Control component

provides an automatic control mechanism to assist as well

as to monitor-correct irrational operator actions. In [16], an

approach for semi-autonomous navigation is proposed. This

approach relies on the automatic detection of interesting

navigational points and a human-robot dialog aimed at

inferring the user’s intended action. During this dialog, the

user can confirm or reject the robots propositions making

the system suitable for low throughput interaction devices,

including brain-computer interfaces. Bruemmer and colleagues

in [11] proposed a semi-autonomous controller which allowed

an operator to set four different control modes: (1) Tele-mode;

(2) Safe-mode; (3) Shared-mode and, (4) Auto-mode. In

tele-mode, the operator manually controls the robot motion.

In safe-mode, both navigation and object detection tasks

are managed by the operator, while collision avoidance

is performed by the robot. In shared-mode, the robot is

responsible for generating optimal paths for navigation, given

the target positions, instructed by the operator. In auto-mode,

the operator is in charge of high-level task, such as defining a

point to navigate to or searching a selected region, while the

robot manages navigation and obstacle avoidance. The main

drawback of the aforementioned approaches is that they do

not allow the operator to change the level of autonomy of

the robot on the fly, during a search and rescue operation

[20]. An interesting approach to semi-autonomous control

with dynamic adjustment of the level of autonomy of the

robot has been described in [14], [21]. In this approach, the

control system is responsible for coordinating the interventions

of the human operator and the low level robot activities,

under a mixed-initiative planning setting. The control system is

endowed with a declarative model of the activities of the robot,

specified in the Temporal Flexible Situation Calculus (TFSC)

[22]. The model explicitly represents the main components and

activities of the robot system, the cause-effect relationships as

well as the temporal constraints among the activities. Further,

the model integrates a representation of the activities of the

human operator, enabling the control system to supervise the

his/her operations. A reactive planning engine (i) monitors

the consistency of the robot and operator activities, with

respect to the model, managing failures and, (ii) incrementally

generates plans, allowing the operator to locally assess the

robot operations. The designed control schema endows the

robot with some hybrid operative modalities lying between

autonomous and teleoperated modes. Each of these mode

is determined by the way in which the operator interacts

with the control system. In [15] the authors described

a sensor-based autonomous sub-track controller to manage

swingable sub-tracks of rescue robots, which are used to

negotiate steps and uneven terrain. The controller allows

an operator to manually control the main tracks, while the

autonomous controller is used for the sub-tracks. Despite the

mentioned approaches to semi-autonomous control resulted to

be very effective in minimizing the workload of the operator,

they do not provide interfaces with the robot functionalities

which allows operators to integrate knowledge aiming to also

reduce computational payload.

III. THE MIXED-INITIATIVE OPERATIONAL MODEL

(MIOM)

Let us assume that a rescue robot is endowed with a set

of functionalities. We denote with S , A and P the set of

functionalities belonging to the perceptual, the control and

planning system of the robot, respectively. We specify with

SA, SS and SP the sets of states of the functionalities in

S , A and in P , respectively. Further, we assume that each

of these sets is finite and that Si∩Sj=∅, for i, j∈{S,A,P}.

For each set of functionalities, we define a finite set Ti, with

i∈{S,A,P}, of transitions. We assume that Ti∩Tj=∅ for

i, j∈{S,A,P}. We denote with ES , EA and EP the finite

sets of internal events associated with each functionality in S ,

A and in P , respectively, with Ei∩Ej=∅ for i, j∈{S,A,P}.

Let us introduce a finite set of operator action Ai for

each i∈{S,A,P}. Here we assume that Ai∩Aj=∅ for each

i, j∈{S,A,P}. MIOM is defined by the following triple

M=〈MS ,MA,MP〉 (1)

with

Mi=〈Si,Ti,Ei,Ai,αi,βi,λi,γi,δi〉 with i∈{S,A,P} (2)

Here αi:Ti→Si is the mapping returning the source state

αi(t)∈Si of the transition t∈Ti. βi:Ti→Si returns the target

state βi(t)∈Si. λi:Ti→Ei maps each transition t∈Ti to

the internal event λi(t)∈Ei which triggers the transition.

γi:Ai→Ei is a mapping from Ai to Ei which takes each

operator action a∈Ai to an internal event γi(a)∈Ei. Finally,

δi:Ti→Ai maps each transition t∈Ti to an operator action

δi(t)∈Ai.

According to the model in (2), each Mi resembles a labeled

transition system further extended with the two additional

mapping γi(·) and δi(·). These functions formally represent

the intervention of the operator on the control and on the state

of a robot functionality, respectively. Intuitively, γi(·) models

the interaction between the robot and the operator as described

in [14], [21] whilst γi(·) extends this operational mode with

a form of interaction acting on the computational results of a

robot functionality, that is, at reasoning level.

In the following, we describe, in more detail, the

development of MIOM in a real rescue robotic system, better

highlighting how operator intervention can affect the reasoning

capabilities of the system in order to speed up computation.
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Fig. 2 Actively Articulated Tracked Vehicle Absolem, designed by
c©Bluebotics for USAR applications. This platform is equipped with the

KINOVA Jarm Arm for pick and place opeartions

IV. MIOM DEVELOPMENT

Before describing a realization of MIOM, as defined in

Section III, we have to introduce the description of the rescue

robotic system in which MIOM has been grounded.

A. Robotic Platform

The robotic platform is an actively articulated tracked

vehicle, initially designed by c©Bluebotics [23] and then, at

a later stage, re-factored by Neovision s.r.o (see Fig. 2). This

robot is endowed with a breakable passive differential system

and two active sub-tracks, namely flippers, on both the ends

of the tracks. The active flippers enhance climbing capabilities

of the robot, while the mechanical differential increases the

robot traction. The mechanical design maximizes the surface

of the tracks in contact with the ground and improves the

stability of such robot on stairs, ramps, rubbles and uneven

terrain. The robotic platform is equipped with a rotating 2D

SICK LMS-100 range finder, a LadyBug3 Omnidirectional

camera and an XSens IMU/GPS inertial sensor unit. On top

of the robot body, the lightweight 6DOFs Kinova Jaco Arm

has been mounted for manipulation tasks. Moreover, a camera

system on a Pan-Tilt Unit-D46-17, by FLIR, enhances terrain

perception, morphological adaptation and navigation.

B. Robot Functionalities

The robot builds up a situation awareness of the

environment, from raw data coming from the different sensors

(see Fig. 3). This situation interpretation is based on a

3D metrical mapping of the environment [24]. In order

to bridge the gap between robot-centric and human-centric

situation awareness, this representation is extended with visual

perception [25], [26], unsupervised and user-driven topological

decomposition [27], [28], functional mapping [29], point cloud

categorization, based on segmentation [30] and traversability

analysis [31]. Situation awareness is further enriched with

a representation of the radio signal strength supporting

the operator to drive towards regions with good signal

coverage so as to avoid dangerous connection drops [32]. The

robot deploys on top of these representations reasoning and

autonomous planning capabilities. These capabilities include

morphological adaptation [33], trajectory planning and control

[34], for complex terrain traversal tasks, and three different

strategies for 3D path planning, based on the 3D map [35], the

segmented map [30] and the traversability map representations

of the environment [31], respectively. A real time algorithm

for updating the 3D map with dynamic obstacles detection

is further embedded within the robot in order to enhance

both navigation and planning tasks [36]. Finally, the robot is

equipped with baseline arm teleoperation implemented using

the Kinova API [37]. The operator can control the arm with

a gamepad in either a Cartesian coordinate system or the

joint space. The user can take advantage of the robot camera

sensors to have visual feedback on the relative position of

the arm during teleoperation. The user has also the possibility

to control the fingers to perform basic manipulation tasks

(e.g. grasping and object). The functionality for the arm

teleoperation also provides three additional basic features:

(1) Automatic return to home position by pressing a button,

(2) Safe emergency stop of the arm and (3) Estimation

of the forces acting on the tool, based on motor current

measurements.

C. MIOM Realization

MIOM realization is developed through a graphical interface

extending the Operator Control Unit (OCU) of the robot.

The extended OCU includes three graphical control elements

which allow an operator to switch between the set of

functionalities SA, SS and SP . The operator changes the

set of functionalities of interest using tabs as navigational

widgets (see Fig. 4). Each tab is composed of three main group

frames. First frame provides a visual feedback of the current

state s∈Si of a functionality. Second frame is composed of

a set of widgets (e.g., buttons, check boxes, sliders, combo

boxes). Each widget is associated with an action a∈Ai which

the operator can perform to change s∈Si. Finally, latter

frame comprises the widgets labeled with the internal events

e∈Ei. Each widget in the second frames effectively realizes

the mapping δi(·) whilst each widget in the third frame

implements the link between the operator actions and the

internal events of a functionality, that is, the mapping γi(·).
In the following, we describe the detailed implementation of

the above skeleton for three robot functionalities, namely,

traversability mapping [31], 3D path planning [30], [31],

[35] and trajectory tracking [34], [38] so as to better clarify

the realizations of both the mappings event-action γi(·) and

transition-action δi(·).
Traversability analysis builds on top of the 3D metrical

map an estimate of the terrain characteristics related to

traversability. This estimate is based on a point-wise cost

function accounting for (1) terrain classification, (2) terrain

roughness, (3) obstacle clearance and (4) point cloud density.

Several processing phases of the incoming point cloud are

required in the traversability mapping pipeline, such as point

cloud segmentation based on normal estimation, estimation

of the boundary regions for obstacle clearance and terrain

roughness measurement from point cloud elevation. Therefore,

the state of this functionality can be represented by the result
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(a) (b)

(c) (d)

Fig. 3 (a) Car detection; (b) point cloud segmentation; (c) path planning on traversability mapping; (c) finger control of the arm

Fig. 4 Navigational widgets for switching between the set of functionalities

of each of these intermediate computational steps. Each of this

result is visualized into a panel included in the state frame of

the tab of the extended OCU associated with this functionality.

As an example, traversability mapping is provided to the

human operator in the form of a colored metric map. Colors

range from blue to red according to estimated traversability,

as illustrated in Fig. 3(c). A button has been added into the

event frame according to the set of the internal events that we

have identified for this functionality (see Fig. 5), namely

E={loadPCD, storePCD, computeNormals, segmentPCD,
estimateRoughness, estimateBoundaries}

Computational cost of traversability analysis increases as

the size of the incoming point cloud grows up. Moreover,

errors in the estimation of point cloud normals, due to missing

information of the surrounding, strongly affect the result of

such an analysis. This is where the operator actions, introduced

in (2) come in. Indeed, on the basis of the visual feedback, the

operator might modify, on the fly, the estimated traversability

cost of a region and then commits this state change to the

robot. Traversability map can thus be updated with knowledge

coming form an external supervisor so as to improve the

estimates provided by the functionality. To this end, we

have included in the operator action frame a set of buttons

corresponding to the following set

A={selectPoint, selectPatch, modifyCost, Undo, Redo,
Save, Load, Commit}

Here selectPoint allows the operator to modify the

traversability estimates of a set of points in the selected one.

selectPatch provides the operator with a handler through

which he/she can manually circumscribe a set of points of a

region and then change their cost value (see Fig. 6).
Three different algorithms can be used for 3D path planning.

First algorithm performs D∗-Lite searching [39] on a tensor

map [35]. Second strategy performs searching on a weighted

connectivity graph built on top of a semantic labeling of the

3D map [30]. Finally, the third algorithm combines together
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Fig. 5 Widgets for the set of internal events of traversability analysis

Fig. 6 Widget allowing an operator to manually circumscribe a set of points of a region to change traversability estimates

traversability analysis and a randomized statistical searching

method for computing a path toward a goal position [31]. The

state of each of these planning strategies, which is visualized

into the state frame of the extended OCU, corresponds to

the representation on top of which each strategy performs

searching together with the associated size and the computed

paths. The event frame includes a set of widgets (see Fig. 7)

labeled with the names of the elements of the following set

of internal events

E={setGoal, chooseStrategy, computePath, Replan}

Missing information as well as the increasing size of the

searching space, affecting computation, are the main causes

of path planning failures. An approach for coping with these

failures is to allow the operator to intervene on the planning

cycle.

To this end, we identified two possible forms of interactions

which can be implemented for supporting planning: (1)

provide the operator with an interface for introducing

way-points and (2) allows the operator to directly draw paths

on top of the 3D map of the environment. First operator

intervention has the main advantage of reducing the size of

the searching space thus speeding up performance. Indeed, it

constrains planning to perform searching on the portion of

point cloud containing two selected way-points. On the other

hand, the latter makes planning search complete. According

to the above form of interactions, the set of operator actions

of MIOM has been defined as follows

A={addWP, removeWP, moveWP, commitWPS}∪
{Trace, Rollback, Delete, Smooth, Commit}

An implementation of these actions in the extended OCU is

illustrated in Fig. 8.

First subset of actions allows an operator to flexibly change

the positions of the way-points. The interface for drawing

paths is described in [38].

Robot control provides operators with several hybrid

operative modalities ranging between autonomous and

teleoperated modes, available during the execution of a task.

Under teleoperation the operator manually controls all the

degree of freedom of the robot. Under shared mode, the

operator can manually control steering, while the robot is in

charge of morphological adaptation or vice versa. The operator

can switch between these operative modalities through a set

of radio buttons suitably included in the control navigational

widget. On the basis of the above modes, we defined the

following set of events

E={moveForward, moveLeft, moveRight, moveBack,
turnLeft, turnRight, Stop}∪{Flat, Raise,
Approach, pushBack, landDown, landUp}

Each e∈E has been implemented by a widget in the internal

event frame of the control tab of the extended OCU (see

Fig. 9).
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Fig. 7 Widgets associated with the internal events of planning

Fig. 8 Operator action widgets of path planning togheter with visual feedback of waypoints

Fig. 9 Widgets in the internal event frame of the control tab of the extended
OCU

Last subset of internal events corresponds to the minimal

set of flippers configurations for executing a robot navigation

task [35], especially stair-climbing (see Fig. 2). In particular,

pushBack can recover the robot from flip-over, by raising

down the platform when it is needed. Raise reduces both

the effort of the flipper servo motors and the traction force

on the robot body facilitating rotational motions [34]. Under

autonomous mode the robot relies on a trajectory tracking

controller in order to follow a route either computed by

a path path planning strategy or provided by the operator

through the interfaces, described above. The controller is also

responsible for simultaneously adapting flippers posture to the

terrain surfaces on which the paths lie [34], [38]. The operator

can monitors, at real-time, the current state of execution,

the trajectory tracking error and the controller parameters.

This feedback is visualized within the state frame of the

tab. However, due to slippage between the tracks and the

terrain, the robot can significantly deviates from the planned

trajectory hitting a nearby obstacle. Moreover, loss of contact

between the tracks and the ridges of the stairs can occur during

stair-climbing thus exposing the platform to serious risks. In

order to limit such dangerous situations a solution might be

to allow the operator to directly act on the internal setting of

the controller. For example, by cutting the maximum speed

of the controller, the operator can depress acceleration thus

forcing the robot to move more slowly on terrains which are

particularly harsh. With this in mind, we defined the following

set of actions

A={scaleTimingLaw, changeVelProfile,
setControlGains, setMaxLinVel, setMaxAngVel

scaleTimeFreq, changeOffset}

Note that for instance that by reducing maximum angular

velocity through the action setMaxAngVel, the operator can

regulates the oscillations of the heading direction of the

robot during stair-climbing thus reducing both the lateral and

longitudinal slippage between the tracks and the ridges of the

stairs. Fig. 10 illustrates an implementation of these action

within the control tab of the extended OCU.
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Fig. 10 Operator actions for changing the internal setting of the controller

Fig. 11 Ex-American collapsed hospital, Calambrone, Italy

V. EXPERIMENTS

In this section, we describe the experiments carried out to

evaluate the benefits of the OCU, extended with the proposed

realization of MIOM on the overall robot performance. The

extended OCU has been implemented in RVIZ, the 3D

visualizer of Robot Operating System (ROS), for displaying

both robot sensor data and state [40].

10 skilled operators have been preliminary trained to use

the functions implemented in each navigational widget. After

this training phase, we deployed the tracked vehicle into a

real rescue scenario (see Fig. 11). Within two rooms of the

collapsed building we located dummies simulating victims. In

addition, we randomly placed three signs for indicating the

presence of dangerous sources.

We instructed the operators to perform a rescue mission

with the tracked vehicle endowed with the extended OCU.

This mission comprised searching for victims as well as the

identification of the dangerous sources. For each operator we

counted the number of times that navigational, internal event
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Fig. 12 Normalized histogram of the average number of times the tab for
traversability, path planning and trajectory tracking, have been clicked, with

respect to the number of operators

and action widgets have been used during the mission.

Fig. 12 shows the normalized histogram of the average

number of times the navigational widget for traversability,

path planning and trajectory tracking, have been clicked, with

respect to the number of operators. From Fig. 12 it can be

noted that, in average, both planning and execution required

the support of the operators. Motivation is due to the harshness

of the environment which made difficult for the robot to

compute long-distance paths as well as to autonomously

execute safe motions on the terrain surface.

Fig. 13 depicts the normalized histogram of the average

number of times both internal event and action widgets

of traversability analysis tab have been used, with respect

to the number of operators. Here, we can observe that

estimateBoundaries, selectPatch and Undo have been
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Fig. 13 Normalized histogram of the average number of times both internal event and action widgets of traversability analysis tab have been used, with
respect to the number of operators
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Fig. 14 Normalized histogram of the average number of times both internal event and action widgets of the path planning navigational tab have been used,
with respect to the number of operators

selected more than others widgets. The main reason is that

estimateBoundaries and selectPatch have been used for

navigation and for filling missing data, respectively. Undo was

due to operator mistakes. Last consideration suggests that this

navigational widget has to include additional feedback for

reducing such mistakes.

Fig. 14 reports the normalized histogram of the average

number of times the operators interacted with both internal

event and action widgets of the path planning navigational

tab.

Results in Fig. 14 highlighted two different phases of

the operators behaviors during the mission. In the first

phase, operators tried manly rely on the planning strategies

implemented on the robot. This explains the high values of

the averages of the internal events. Operators alternate between

chooseStrategy and Replan widgets. In the second stage,

we have registered an intensive use of both addWP and Trace.

This was due the continuous failures of the strategies in the

first phase. These two actions of MIOM turned out to be

more efficient than the internal events. Moreover, the degree of

flexibility of MIOM significantly reduces operators mistakes.

Indeed, values of both removeWP and Delete resulted to be

very low (about 0.01 in average).

Fig. 15 (a) shows the normalized histogram of the average
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Fig. 15 (a) Normalized histogram of the average number of times internal event widgets of control tab have been used, with respect to the number of
operators; (b) normalized histogram of the average number of times operator actions have used.

number of times the operators used the internal event widgets

of the control tab. On the other hand, Fig. 15 (b) shows

the normalized histogram of the average number of times

operator actions have used. Here, it can be noted from the

results that operators assumed a careful behavior. Indeed, event

widgets for stopping robot motions as well as for controlling

flippers posture have been mostly clicked. Moreover, very

often, the operators have forced the robot to move slowly on

the traversed terrains. This behavior highlights that, despite the

operational modes resulted to be very effective in minimizing

the workload of the operator, they are still far from being really

considered trustworthy by the operators [41].

Finally, Fig. 16 shows the trend of the computational cost,

with respect to time, of path planning, with and without

operator intervention through MIOM, as the size of the

incoming point cloud increases. This trend demonstrates

that both way-point selection and path drawing operator

interactions speed up planning.

VI. CONCLUSION

In this paper, we described MIOM for robots in USAR. The

main motivation behind this alternative model of interaction

is to integrate operator knowledge within the reasoning

capabilities of the robot in order to enhance both reliability

and robustness of the system. We provided a formal definition,

a skeleton and a realization of MIOM. Experiments under
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Fig. 16 Computational cost, with respect to time, of path planning, with and
without operator intervention through MIOM, as the size of the incoming

point cloud increases

human-robot interaction setting have proved the effectiveness

of MIOM for building a more accurate representation of the

environment, for speeding up path planning on harsh terrain

and, finally, for supervising robot motions.
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