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Abstract—This paper develops a meshless approach, called 
Element Free Galerkin (EFG) method, which is based on the weak 
form Moving Least Squares (MLS) of the partial differential 
governing equations and employs the interpolation to construct the 
meshless shape functions. The variation weak form is used in the 
EFG where the trial and test functions are approximated bye the MLS 
approximation. Since the shape functions constructed by this 
discretization have the weight function property based on the 
randomly distributed points, the essential boundary conditions can be 
implemented easily. The local weak form of the partial differential 
governing equations is obtained by the weighted residual method 
within the simple local quadrature domain. The spline function with 
high continuity is used as the weight function. The presently 
developed EFG method is a truly meshless method, as it does not 
require the mesh, either for the construction of the shape functions, or 
for the integration of the local weak form. Several numerical 
examples of two-dimensional static structural analysis are presented 
to illustrate the performance of the present EFG method. They show 
that the EFG method is highly efficient for the implementation and 
highly accurate for the computation. The present method is used to 
analyze the static deflection of beams and plate hole. 

 
Keywords—Numerical computation, element-free Galerkin, 

moving least squares, meshless methods. 

I. INTRODUCTION 

INCE ten years, new digital alternatives to the finite 
element method (FEM) have been developed. They aim to 

avoid the difficulties related to the mesh by constructing a 
portion or all of the approximation by other approaches that 
the spatial discretization predetermined element. These 
techniques have brought certain ease in solving known 
problems to the FEM, like problem geometrical discontinuities 
(cracks, interface). Among these methods, we distinguish the 
mesh free methods. The so-called meshless methods construct 
approximations from a set of nodal data without the need for 
any (finite-element) a priori connectivity information between 
the nodes [1]. In general, a meshless method uses a local 
interpolation or approximation to represent the trial function 
with the values (or the fictitious values) of the unknown 
variable at some randomly located nodes [2], [3]. 

Compared with FEM, the meshless methods can easily 
handle large deformation and strongly nonlinear problems, 
since the connectivity among the nodes is generated as a 
portion of computation and it can change with time. The 
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method meshless is less susceptible to mesh distortion 
difficulties than FEM. 

In meshless methods, the influence domains may and must 
overlap each other, in opposition to the no-overlap rule 
between elements in the FEM. In the meshless methods, the 
nodes can be arbitrary distributed, once the field functions are 
approximated within an influence domain rather than an 
element. The meshless methods can solve complex problems 
without generating any mesh. The method should also 
correctly handle the governing differential equations with the 
appropriate boundary conditions, Fig. 1. The numerical 
integration is performed by the Gauss quadrature with the 
Gauss points, and then the results are interpolated at the field 
nodes. This makes a further approximation of the values of 
function at the field nodes [4]. 

 

 

(a)                                                  (b) 

Fig. 1 Numerical computations of (a) FEM, (b) EFG 
 

Meshless methods construct approximations entirely in 
terms of nodes. The approximation function is an essential 
feature of the method. A weight function, which plays an 
important role in the performance of the methods, is used in 
all varieties of meshless methods. The compact support of 
weight functions, also called the domain of influence of a 
node, gives a local character to the meshless methods. The 
weight function is nonzero in the domain of support and zero 
outside of the domain of support. The most commonly used 
supports are discs and rectangles [5]. 

Many of meshless methods have been developed, such as 
the diffuse element method (DEM), EFG method, the finite 
point method (FPM), meshless local Petrov Galerkin (MLPG) 
method, the multi-scale reproducting kernel particle (MRKP) 
method, wavelet particle method (WPM), the radial basis 
functions (RBF) method, the meshless finite element method 
(MFEM) [5], [6]. The purpose of the shape function is to 
approximate the field functions using their values at sampling 
nodes in the analysis domain. (MLS) approximation has been 
used for constructing the shape function in EFG [7]. 

Belytschko et al. [8] used MLS interpolants to construct the 
trial and test functions for the variational principle (weak 
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form) and weight functions. In contradistinction to DEM, they 
introduced certain key differences in the implementation to 
improve the accuracy. Chen et al. [9] showed that for 
convergence, an integration constraint (IC) is introduced as a 
necessary condition for a linear exactness in the mesh-free 
Galerkin approximation. 

Among the meshfree methods, EFG meshfree method is 
one of the best known and most robust one; it is based on the 
resolution of the low form of partial differential equations by a 
method Galerkin [10]. The approximation of the displacement 
field that is built to be introduced into the weak form does not 
require a mesh, but only a set of points distributed over the 
field. EFGM offers several advantages. First, it eliminates the 
creation of elements in the classical FEM. Second, the 
postprocessing of strains and stresses is required in the FEM 
to obtain smooth field plots, whereas no such postprocessing 
is required in the EFGM as these fields are already smooth. 
Third, the performance of the EFGM seems to be independent 
of nodal point arrangement. Also, an incompressible material 
can be treated by EFGM without any modifications.  

Zhang et. al [11] used moving least-square technique to 
construct shape function in the EFGM at present, but 
sometimes the algebra equations system obtained from the 
moving least-square approximation is ill-conditioned and the 
shape function needs large quantity of inverse operation. 
Soparat et al. [12] extended the EFGM to include nonlinear 
behavior of cracks in 2D concrete. The paper presents a 
numerical simulation of mechanical structures, based on EFG.  

In this work, the performance of distinct meshless EFG 
techniques written in Matlab is compared with FEM method 
implemented in ANSYS for assessing the convergence, in the 
case of digital simulation of the static behavior of beams, plate 
with a central and elliptic hole. 

II. MESHLESS METHOD AND MLS APPROXIMATION 

EFGM was developed by Belytschko et al. [9] based on 
Diffuse Elements Method developed by Nayroles et al. [13]. 
EFG method has some major features;  
1. MLS approximation is implemented to construct the 

shape functions. 
2. Galerkin Weak form with constraints to apply the 

essential Boundary conditions is used to develop the 
discrete equation system equations.  

3. EFG is a pseudo mesh free method as it requires 
background cells for performing numerical Integrations to 
construct the system matrices  

A. MLS Approximation 

Following is the procedure for constructing shape functions 
for mesh free methods using MLS approximation [14].  

Let u(x) the function of the field variable in the domain Ω, 
the approximation of u(x) is denoted by uh(x).  

In MLS, we approximate the field function in the form of 
series representation as: 

 

       
1

m
h T

j j
j

u x p x a x p a x


        (1) 

where, m is the number of monomials (polynomial basis) a(x) 
is the vector of coefficients given by 
 

          0 1 1.............T
m ma x a x a x a x a x     (2)

 
 

We should note that a(x) is an arbitrary function of x. A 
functional of weighted residual is then created using the 
approximated values of the values of the field function and the 
nodal parameters u1=u(x1). 
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where w(x−x1) is a weight function. Weight functions play 
their role effectively when sufficient nodes are used. 
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This gives us the following expression of the coefficient 
vector: 
 

1( ) ( ) ( ) sa x A x B x u         (6) 

 
where A is called the MLS moment matrix given by 
 

     1 1
1

( )
m

T

i

A x w x p x p x


         (7) 

 
where w(x) = w(x−x1) and B(x) has the form 
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where φ(x) is the MLS shape function defined by 
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This leads us to another important thing about applying the 
essential boundary conditions on the weak form since we 
cannot apply boundary conditions directly to u1. Therefore, we 
use Lagrange multipliers to enforce the essential boundary 
condition. 

B. Support Domain and Weight Function 

Works of Bui [15] confirm that the results vary somewhat 
from the chosen weight function. For the case of two 
dimensions, the weight function is applied to a circular area 
(where r is the radius of the sphere of influence) and 
rectangular. There is no difference if a circular or rectangular 
support domain is used in the EFG method. Weight functions 
are functions that are assigned a space of influence (Wi) for 
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each point at which it is associated. The area of influence must 
be non-zero and of course included in the domain W. 

A weight function needs properties as: 
- Compact support, i.e. zero outside the support domain. 
- The value of all points in the support domain is positive. 
- The value of its maximum at the current point and 

decrease when moving outwards. 
There are many kinds of function satisfying for these 

properties. In this paper, we used the quadratic spine function 
as: 
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C. EFG Formulation 

Partial differential equations and boundary conditions of the 
system (2D problem) can be written as  
 

0TL b              (10) 
 

The boundary conditions are given as: 
 

tu u on            (11) 

 
where L is the divergence operator.  
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where L is a differential operator matrix dependent on the 
strain types, we arrive at: 
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Equation (13) then becomes: 
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This can be written as: 
 

0
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         (14)

 

III. NUMERICAL RESULTS AND DISCUSSIONS 

As a first challenge to understand the EFG method, a 
program for linear static with MATLAB was implemented. 
This solution was made by Timoshenko and Goodier [16]. 
Consider a beam, as shown in Fig. 2, with length L and height 

D subjected to a parabolic traction at the free end. The 
parameters of the beam are taken as E = 3.107, m = 0.3, D = 
12, L = 48, and P = 1000. The beam has a unit thickness and a 
plane stress problem is considered. 

 

 

Fig. 2 A cantilever beam subjected to a parabolic traction at the free 
end 

 
The traction vector at the free end (x=48) are parabolic and 

given by 
 

2
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The moment of inertia for a rectangular surface with unit 

thickness is 
 

3

1 2

D
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The displacement in the x direction is given by 
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The displacement in the y direction is given by 
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Fig. 3 shows the model Meshless of the deformed and 

undeformed beam. 
 

 

 

Fig. 3 Nodal discretization with beam 
 

The results of the displacement obtained by the EFG and 
the analytical model for the beam are given in Fig. 4. 
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Fig. 4 Vertical displacement Uy of the beam to the central axis (y = 
0) obtained by the EFG method and the analytical model 

 
The results of the numerical solution obtained with the EFG 

method can be considered satisfactory and close to the 
analytics solution. The relative errors of displacements ux 
exact and uy computed (EFG) are considered for in Table I. 

 
TABLE I 

COMPARISON OF THE EXACT SOLUTION AND THE COMPUTED SOLUTION 

Nodes uy exact uy EFG Relative error (%) 

7*5 - 0.0089 - 0.0083 6.74 

11*5 - 0.0089 - 0.0087 2.24 

15*9 - 0.0089 - 0.0088 1.12 

20*9 - 0.0089 - 0.0088 1.12 

 
Consider an infinite plate with a central hole: x2+y2≤a2 (a is 

the radius of the hole), which is subjected to a unit uniform 
tension ( 1  ) in x direction at infinity (Fig. 5).  

 

 
Fig. 5 The infinite plate with a central hole 

 
Due to the symmetry, only quarter of the plate is modeled 

as shown in Fig. 4. For this plane strain problem, the material 
properties are taken as E = 1000 and 0 .3  . Symmetry 
conditions are imposed on the left and bottom edges, and the 
inner boundary at x2+y2 ≤ a2 is traction free. 

Timoshenko and Goodier [16] detail the analytical model of 
the stresses on an infinite plate with a hole in the center. It is 
subject to normal traction (Nx) in the direction ox. The stress 
distributions in the perforated plate (and) is described by: 
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The simulation with the FEM with ANSYS software uses 

PLANE42 elastic elements which are formed by 4 nodes and 2 
d.d.l [17]. Modeling procedure with EFG uses the generation 
of points of ANSYS in its procedures for an even distribution 
points (Fig. 7). 

 

 
EFG                            FEM 

(a) 67regular nodes 
 

 
EFG                            FEM 

(b) 91regular nodes 
 

   
EFG                            FEM 

(c) 241 irregular nodes 

Fig. 6 Distribution in the plate with a central holefor FEM and EFG 
methods 
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Fig. 7 Irregularly distribution 280 nodes EFG Method 
 

In Fig. 7, 280 nodes are arranged irregularly in both h and r 
directions. 

The meshfree code has successfully simulated the 
displacement and stress in the plate with a central hole. 

 
 
 
 
 
 
 

 

 

(a) 
 

 

(b) 
EFG                            FEM 

Fig. 8 Displacement (ux, uy) along x = 0 for the plate with a central hole, (a) displacement ux, (b) displacement (uy) 
 

Fig. 9 shows the distribution of stress along x=0 for the 
plate. This application illustrates the benefits of EFG method 
to a distribution of stress in a square plate having a crack 
(hole). 

 

The variations between the analytical results and those 
obtained by the two numerical methods are also shown in Fig. 
10.  
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(a) 
 

 

(b) 
 

 

(c) 
EFG                            FEM 

Fig. 9 Distribution stress along x = 0 for the plate with a central hole, (a) Distribution Stress 
x x , (b) Distribution stress 

y y , 

(c) Distribution stress 
x y  
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(a) 
 

 

(b) 

Fig. 10 The normal stress 
x x along x = 0 for the plate with a 

central hole 
 

We note that the superposition of values related stress 
curves obtained by numerical methods EFG and MEF one 
hand, and the confrontation with the analytical solution on the 
other hand, produced almost the same values, which 
convergence the method EFG implemented for modeling 
square plates in the presence of failure. The calculation time is 
different for the two modeling techniques due to the 
integration features and size of the system of equations solved 
by the two numerical methods. It should be mentioned here 
that for this problem, the method meshfree EFG uses less 
computational cost than the method FEM, essentially when 
apply the meshfree method in a very small region. 

Fig. 10 presents the comparison of computed results with 
the exact solution for the stress 

x x along x = 0. This 

comparison shows that the numerical solutions of 91-node and 
241-node as shown in Fig. 10 (a) are all satisfactory. 
Furthermore, the results of 241 nodes are more accurate than 
that of 91 nodes. Fig. 10 (b) shows the numerical results of 
regularly and irregularly distributed 280 nodes. Again, it can 
be found that the results in these two cases agreed well with 
the exact solution. 

The energy norm can comprehensively reflect the accuracy 

of strain and stress. The energy norm is defined as: 
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1

21
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TN um E xact N um E xactD d    


 
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 
  (22) 

 
The results of the convergence rates are shown in Fig. 11. A 

similar comparison with [8] shows comparable results for the 
relative error in energy, but less accurate results when 
comparing the relative error in displacements log10ru. 

 

 

Fig. 11 The convergence study for the plate with circular hole 
 
For complex mechanical parts geometries (Fig. 12), the 

presence of a spherical or ellipsoidal inclusion in the square 
dimension of plate is similar to the previous problem, with an 
elliptical crack. 

 

 

Fig. 12 The infinite plate with a central elliptic geometry of crack 
 
The maximum stress is located at the crack tip (point A) of 

the plate with an elliptic geometry of crack. The stress 
distributions in the perforated plate are described by: 

 
2

1A

b

a
     

 
          (23) 

 
The simulation with the FEM with ANSYS model uses 

PLANE42 elastic elements which are formed by 4 nodes and 2 
d.d.l. All the problems have been simulated by EFG codes 
(algorithms) writing in MATLAB. 

 

A

 

 2b

2a 

A
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Fig. 13 Nodal distribution in the plate with an elliptic geometry of 
crack for FEM and EFG methods (333 nodes) 

 
Fig. 14 shows the nodes distribution with EFG method 

adapted along the plate. 
 

 

Fig. 14 Irregularly distribution 361 with nodes EFG Method 
 

The distributions of horizontal displacements in the 
elliptical plate, with the two simulated numerical methods, are 
shown in Fig. 15. 

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 15 Displacement (ux) along x = 0 for the plate, (a) ux FEM, (b) 
ux EFG, (c) ux EFG adapted 

 
The Meshfree code has successfully simulated the 

displacement and stress in the plate with a central elliptic 
geometry of crack. The results of the numerical solution 
obtained with the EFG method can be considered satisfactory 
and that are close to the Analytics solution. 

IV. CONCLUSION 

A new meshless approach, called EFG method, has been 
developed for problems of linear elasticity. In the present 
method, the interpolation technique is employed to construct 
the shape functions with the weight function property by using 
the scattered points. This property of the shape functions 
makes it easy to impose the essential boundary conditions. 

The numerical results demonstrate that the EFG method 
presented in this paper is easy to implement, and the 
computational accuracy is good for the displacements and 
stresses. The convergence study shows that the presently 
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developed EFG method possesses good convergence for the 
problem considered. 

 

 

Fig. 16 The normal stress 
x x along x= 0 for the plate with a central 

elliptic geometry of crack 
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