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 
Abstract—This paper deals with the problem of two-dimensional 

(2-D) recursive doubly complementary (DC) digital filter design. We 
present a structure of 2-D recursive DC filters by using 2-D symmetric 
half-plane (SHP) recursive digital all-pass lattice filters (DALFs). The 
novelty of using 2-D SHP recursive DALFs to construct a 2-D 
recursive DC digital lattice filter is that the resulting 2-D SHP 
recursive DC digital lattice filter provides better performance than the 
existing 2-D SHP recursive DC digital filter. Moreover, the proposed 
structure possesses a favorable 2-D DC half-band (DC-HB) property 
that allows about half of the 2-D SHP recursive DALF’s coefficients to 
be zero. This leads to considerable savings in computational burden 
for implementation. To ensure the stability of a designed 2-D SHP 
recursive DC digital lattice filter, some necessary constraints on the 
phase of the 2-D SHP recursive DALF during the design process are 
presented. Design of a 2-D diamond-shape decimation/interpolation 
filter is presented for illustration and comparison. 

 
Keywords—All-pass digital filter, doubly complementary, lattice 

structure, symmetric half-plane digital filter, sampling rate conversion. 

I. INTRODUCTION 

WO digital filters become a complementary pair if the 
passbands of one matches the stopbands of the other and 

vice versa. Therefore, complementary digital filters are widely 
used in many signal processing systems where different 
frequency bands are to be processed separately to measure 
signal strengths at each band or to achieve for example, data 
compression or noise reduction. Furthermore, a complementary 
filter pair is used to split the input signal in two adjacent bands, 
and also is of importance for constructing complex multirate 
systems and filter banks. A pair of one-dimensional (1-D) 
complementary digital filters H(z) and G(z) can be designed to 
exhibit (1) all-pass complementary property: H(z) + G(z) = A(z), 
where A(z) is an all-pass function; and (2) power 
complementary property: H(z)H(z-1) + G(z)G(z-1) = 1. This pair 
of H(z) and G(z) is called doubly complementary (DC) filters. 
Various techniques have been presented for the design of 1-D 
DC filters based on a parallel structure of two 1-D all-pass 
building blocks [1]-[4].  

Many research achievements associated with the design and 
implementation of 1-D digital lattice filters have been reported 
in the literature [5]-[7]. 1-D digital lattice filter structure 
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exhibits the attractive advantages of low passband sensitivity 
and robustness to quantization error. Additionally, 1-D digital 
lattice filter structure requires lower computational cost than 
1-D direct-form digital filter with similar design specifications. 
It The above advantages of 1-D digital lattice filter structure 
over conventional direct-form 1-D digital filter structure are 
also possessed by 2-D digital lattice filters. The minimal 
realization of a 2-D system [8] has been widely concerned 
because it results in the least hardware requirement and less 
computational complexity. The minimal delay realization for a 
2-D digital lattice structure has been presented in [9]. The 
cascaded 2-D digital lattice filter has the minimal number of 
delay elements 2n when n basic lattice sections are employed. 
The resulting 2-D transfer function exhibits all-pass 
characteristics with quarter-plane (QP) support region. 

Due to the advent of digital video systems and the rapidly 
increasing use of digital signal processors, it is worth exploring 
the properties of two-dimensional (2-D) DC digital filters and 
their design methods. In this paper, we present a 2-D SHP 
recursive DC digital filter composed of a pure delay section and 
a 2-D SHP recursive DAF with a lattice structure. The proposed 
2-D SHP recursive DC digital filter possesses the favorable 2-D 
DC half-band (DC-HB) characteristics allowing about half of 
the 2-D SHP recursive DALF’s coefficients to be zero. This 
leads to considerable savings in computational burden. During 
the design process, we impose some necessary constraints on 
the phase of the 2-D SHP recursive DAF to ensure the stability 
of a designed 2-D SHP recursive DC digital lattice filter. A 
design example of a diamond-shape decimation/interpolation 
filter is provided to show the effectiveness of the proposed 2-D 
SHP recursive DC digital lattice filter.  

This paper is organized as follows. Section II presents the 
theory of 2-D SHP recursive digital all-pass lattice filters 
(DALFs). In Section III, we propose a 2-D SHP recursive 
doubly complementary digital filters based on the 2-D SHP 
recursive DALFs. We also describe the 2-D DC-HB 
characteristics possessed by the proposed 2-D SHP recursive 
DC digital lattice filter pair and formulate the least-squares 
design problem in Section III. Section IV presents an iterative 
technique for designing the 2-D SHP recursive DC digital 
lattice filters. The phase constraints for ensuring the stability of 
the design result are also presented. An example of designing a 
2-D diamond-shaped filter is provided in Section V for 
comparison. Finally, we conclude the paper in Section VI. 

II.  2-D SHP RECURSIVE DIGITAL ALL-PASS FILTERS 

A. Conventional Direct-Form 2-D SHP Recursive DAFs 

Consider a 2-D recursive direct-form DAF with order M×N 
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with its transfer function given by [10]: 
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The all-pass filter A(z1,z2) is completely characterized by the 

denominator polynomial D(z1,z2). Let the phase response of 
A(z1,z2) and that of D(z1,z2) be ),( 21   and ),( 21  , 

respectively. We can obtain from (1) that: 
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The denominator polynomial D(z1,z2) has the symmetric 

half-plane (SHP) support region for its coefficients and is given 
by: 
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B. 2-D SHP Recursive DAFs with a Lattice Structure 

Let the coefficients d(-m,n) = d(m,n), we rewrite (3) as: 
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where c(n,z2) is given by: 
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for n = 1, 2, …, N. Based on (5), we present a lattice structure as 
shown in Fig. 1 for realizing a 2-D SHP recursive DAF. The 
input/output relationship of the pth lattice section in Fig. 1 is 
expressed by: 
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for p = 1, 2, …, N, where 
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for p = 1, 2, …, N. By setting Q0(z1,z2)= R0(z1,z2)=U(z1,z2) and 
using the forward recursion given by (6), we can derive 
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As a result, the overall transfer function of Fig. 1 is given by: 
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We note from (10) that Fig. 1 generates a lattice-form 2-D 

SHP recursive DAF A(z1,z2) with order M×N. As the 1-D lattice 
filters, if |kp(z1)|<1, for p =1, 2, …, N, then LN(z1,z2) will be a 
minimum-phase polynomial [11]. 

C. Transformation from Direct Form to Lattice Form 

Suppose that the direct-form 2-D SHP recursive DAF (1) is 
designed by utilizing the existing techniques, it can be 
transformed into the proposed lattice form. The reflection 
coefficient functions kp(z1) in Fig. 1 can be calculated by 
inverting the recursion (6) as follows: 
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Initially, for p = N, we set: 
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The reflection coefficient function kN(z1) is chosen so that it 

equals the 1-D coefficient function corresponding to the z2
-N 

term in DN(z1,z2), i.e. 
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For p = N-1, N-2, …,1, we can calculate the reflection 

coefficient function kp(z1) that is the 1-D coefficient function 
corresponding to the z2

-p term in Qp(z1,z2). Then, Qp-1(z1,z2) and 
Rp-1(z1,z2) can be recursively derived by calculating (11). 

III. 2-D SHP RECURSIVE DOUBLY COMPLEMENTARY FILTERS 

A. 2-D SHP Recursive DC Digital Lattice Filter Pairs 

Consider the following two 2-D digital filters with frequency 
responses given by: 
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where )( 21  jj e,eA  is a 2-D SHP recursive DALF having a 

transfer function given by (10) with order M2×N2. Substituting 
(2) into (15) and (16) yields: 
 

   ),(),(cos
2

),(

2121m

)),(2( 2122122111

21






p

NMjjNjM
jj

jexp

eee
eeG







(17) 

 
and 

  )}
2

),(({),(sin

2
),(

2121m

)),(2( 2122122111

21













p

NMjjNjM
jj

jexp

eee
eeH (18) 

 
where 

 
),(

2

)()(
),( 21

221121
21 


 




NNMM
m

   (19) 

 
and 

 
),(

2

)()(
),( 21

221121
21  




NNMM
p

   (20) 

 
Based on (17) and (18), two properties of the proposed 2-D 

SHP recursive digital lattice filters can be easily obtained as: 
I. The all-pass-complementary property: 
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II. The power-complementary property: 
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Therefore, the construction for G(z1,z2) and H(z1,z2) shown in 

Fig. 2 forms a 2-D SHP recursive DC digital lattice filter pair. 
Moreover, we have from (19) and (20) that the phase response 

)( 21  , of LN2(z1,z2) is given by: 
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We observe from (23) that the problem for designing the 2-D 

SHP recursive DC digital lattice filters G(z1,z2) and H(z1,z2) can 
be formulated as a problem of finding the phase 

)( 21  , which approximates to some desired phase 

response )( 21  ,d of )( 212
z,zLN  in some optimal sense. 

As a result, the design problem in least-squares sense can be 
formulated as: 
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where ||x||2 is the squared norm of x, )( 21  ,W  is the preset 

frequency weighting function, and )},({ 21

2

 jj
N eeLarg is the 

phase response of )( 212
z,zLN . 

B. The Half-Band Property of 2-D SHP DC Lattice Filters 

The 2-D DC half-band (DC-HB) property obtained from the 
proposed 2-D SHP recursive DC digital lattice filters is 
explored. From (15), we have: 
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Based on (16) and (25), we further obtain: 
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with the parameters rp(m) = 0 in (7), for m + p = an odd number. 
Therefore, )( 21  jj e,eG  and its shifted version 

)( )()( 21   jj e,eG  possess the DC properties, i.e. 
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These properties indicate that the frequency response of 

)( 21 z,zG  possesses the DC symmetry with respect to the 

half-band frequency /2)/2,()( 21  , in the first quarter 

of the frequency plane, i.e., the DC-HB property. The 2-D 
DC-HB characteristics in the first quarter plane obtained from 
the proposed 2-D SHP recursive DC digital lattice filters are 
depicted in Fig. 3. The passband p  and stopband s  of are 

symmetric with respect to the half-band frequency. If we set 
    2211  spsp , the passband of the shifted 

version of )( 21  jj e,eG , i.e., )( )()( 21   jj e,eG , 

will cover the passband of )( 21  jj e,eH . This means that if 

0 )( 21 |e,eG| jj   in the stopband, then the magnitude 

response of G(z1,z2) becomes 1 in the passband. Hence, we only 
need to approximate the passband or stopband response during 
the design of G(z1,z2). Moreover, the DC-HB property reveals 
that about half of the parameters rp(m) = 0 in (7), for m + p = an 
odd number. Both advantages lead to significant savings in 
computational burden during the design process. 

IV. THE DESIGN TECHNIQUE 

In this section, we present a design technique for solving the 
minimization problem (24). This is through a frequency 
sampling and iterative approximation scheme to find the 
optimal reflection coefficient functions kp(z1) for p =1, 2, …, 
N2, for the proposed 2-D recursive SHP DALF. 
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A. Stability of the 2-D Recursive SHP Lattice Filter 

The stability issue is crucial for the proposed 2-D SHP 
recursive digital lattice filter. The stability of an (M×N )th order 
2-D recursive DAF )( 21  jj e,eA  is guaranteed when the phase 

response )},({ 21  jj eeAarg  satisfies the following conditions 

[12]: (I) )},({ 21  jj eeAarg  is monotonically decreasing along 

1  axis and )},({ 2 jj eeAarg = )},({ 20 jj eeAarg  − Mπ for 

  2 ; (II) )},({ 21  jj eeAarg  is monotonically 

decreasing along 2 axis and )},({ 1  jj eeAarg = 

)},({ 01 jj eeAarg   − Nπ for   1 . Hence, we only 

need to focus on the minimization problem (24) and the 
stability of the designed 2-D SHP recursive digital lattice filters 
will be simultaneously guaranteed if the desired phase 
response )( 21  ,d  satisfies the above two constraints. 

B. The Iterative Design Procedure  

As shown in (24), the design problem for finding the optimal 
parameters rp(m), for m = 0, 1, 2, …, M2 and p =1, 2, …, N2 for 
the reflection coefficient functions kp(z1) is a highly nonlinear 
optimization problem. However, it is appropriate to employ the 
trust-region method [13], [14] to iteratively solve this problem. 
In the following, we summarize the iterative design procedure 
step by step. 
Step 1: Specify the ideal phase response )( 21  ,d which 

satisfies the stability criterion as presented in Section 
IV. A for ensuring the stability of the designed 2-D SHP 
recursive digital lattice filter. 

Step 2: At the initial iteration, we set the iteration number l = 0 
and the parameters (0)rp(m) = 0, for m = 0, 1, 2, …, M2 
and p =1, 2, …, N2. 

Step 3: At the kth iteration, we compute the reflection 
coefficient function kp(z1) for p = 1, 2, …, N2, from (7) 
and its corresponding lattice-form polynomial 

)( 212
z,zLN by calculating the forward recursion as 

presented in Section II. B.  
Step 4: Compute the difference between )},({ 21

2

 jj
N eeLarg  

and )( 21  ,d over a finite set of discrete frequencies 

)( 21 ji , , where )( 21 ji , denotes the (i,j)th 

discrete frequency point taken on the 2-D )( 21  ,  

plane. 
Step 5: Utilize the trust-region optimization method of [13], 14] 

to compute the adjustment in (l)rp(m) = 0, for m = 0, 1, 2, 
…, M2 and p = 1, 2, …, N2. 

Step 6: Repeat Steps 3 − 5 and increase the iteration number by 
one per iteration until a satisfactory design result is 
achieved. 

V. COMPUTER SIMULATION RESULTS 

A. Design Example for Sampling Structure Conversion 

The conversion between different periodic sampling 
structures is important for applications related to 

multidimensional signal processing. It is known that there are 
numerous choices for periodicity matrix P and the sampling 
matrix S [11], [15]. Here, we consider two widely used 
sampling structures—rectangular sampling structure and 
hexagonal sampling structure as follows: For a rectangular 
sampling, the sampling matrix SR and periodicity matrix PR are 
given by: 
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where T1 and T2 represent the horizontal and vertical sampling 
periods for a spatial sampling pattern, whereas for 
spatiotemporal conversions, T1 represents the vertical period 
and T2 represents the frame period, respectively. In the case of 
(L,K) hexagonal sampling matrix, these matrices are defined 
by:  
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where L and K are strictly positive integer parameters of the 
hexagonal sampling structure. It is shown that the 
diamond-shaped decimation/interpolation filters are good 
candidates for conversion processing between rectangular and 
hexagonal sampling structures because they allow a maximum 
resolution in the horizontal and vertical directions. If T1 and T2 
are normalized to 1, the ideal diamond-shaped filter, which 
possesses a quadrantal symmetry, is characterized in the first 
quarter plane with   10  and   20  by: 
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where L/ p1

 and K/ p2 . The filter gain G is 

equal to 1 for a decimation filter, whereas it is equal to 2LK for 
interpolation processing. Here, we present the design of 2-D 
diamond-shaped decimation/interpolation filters, which are 
widely used for sampling structure conversion, using the 
proposed 2-D SHP recursive DC digital lattice filter. 

B. The Design Specifications 

This example is similar to that considered by [16], [17]. We 
use the following specifications for the design example: The 
(L,K) = (1,1) 2-D diamond-shaped filter which is widely used 
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for sampling rate conversion by a factor of two, with the 
passband edge frequencies  0.8  ,  21  pp  and the 

stopband edge frequencies ,0.4  ,0.25  21   ss  i.e., the 

desired magnitude response of the filter is given by: 
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1
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80
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



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







..

.G d

              (32) 

 
Clearly, the magnitude characteristics do not possess the 2-D 

HB property. Only uniformly sampled passband frequency grid 
points are taken during the design process. Based on the 
proposed 2-D SHP recursive DC digital lattice filter, the 2-D 
diamond-shaped filter is designed by setting M1 = M2 = 4 and 
N1+1 = N2 = 7. Thus, the number of independent parameters is 
(M2+1)N2 = 35 which is the same as that of [17]. According to 
(19) and (20), we set the desired responses for ),( 21 m  and 

),( 21  p as follows: 
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As a result, the desired phase response )( 21  ,d of 

)( 212
z,zLN  is given by: 
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Accordingly, (34) becomes: 
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                  (35) 

 
for this design case of M1 = M2 = 4 and N1+1 = N2 = 7. We note 
from (35) that )( 21  ,d satisfies the phase stability 

conditions described in Section IV.A. We would expect that the 
stability of the designed 2-D SHP recursive DC digital lattice 
filter is ensured. The 2-D fast Fourier transform used during 
this design is 70×70. The frequency weighting function 

)( 21  ,W  is set to 1 for the entire frequency plane. Table I 

lists the comparison of the significant design results in terms of 
the following performance parameters: 

Passband Magnitude Mean-Squared Errors (PMSE) 
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Stopband Magnitude Mean-Squared Errors (SMSE) 
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Peak Stopband Attenuation (PSA) 
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Passband Phase Mean-Squared Error (PPMSE) 
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Peak Passband Phase Error (PPPE) 
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For the design of using the proposed 2-D SHP recursive DC 

digital lattice filter, Fig. 4 shows the magnitude response of the 
designed ),( 21  jj eeG . Fig. 5 depicts the phase response of 

the designed denominator )( 212
z,zLN , whereas Fig. 6 plots the 

absolute phase error   |),()(| 21
21

2


d
jj

N e,eLarg  . From the 

simulation results, we observe that the design method using the 
proposed 2-D SHP recursive DC digital lattice filter can 
provide better results than the existing conventional direct-form 
design [17]. 

VI. CONCLUSION 

This paper has presented a lattice structure of 2-D recursive 
doubly complementary (DC) digital filters using 2-D 
symmetric half-plane (SHP) recursive digital all-pass filters 
(DAFs). The proposed 2-D SHP recursive DC digital lattice 
filter possesses a favorable 2-D DC half-band (DC-HB) 
property that allows about half of the 2-D SHP recursive 
DALF’s coefficients to be zero. The computer simulation 
results of a 2-D diamond-shape decimation/interpolation filter 
design show the effectiveness of the proposed 2-D SHP 
recursive DC digital lattice filters. 
 

TABLE I 
 SIGNIFICANT DESIGN RESULTS FOR THE DESIGN EXAMPLE. 

 
Conventional 

Direct-Form Design [17] 
The Proposed  

Lattice-Form Design 
PMSE 5.1715×10-10 8.1617×10-11 

SMSE 1.3422×10-6 8.5503×10-7 

PSA 34.9551 39.8172 

PPMSE 4.2567×10-6 3.1589×10-6 

PPPE 4.9311×10-2 3.4069×10-2 

Number of iterations 0 8 
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Fig. 1 The proposed 2-D SHP recursive DALF 
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Fig. 2 Structure of the proposed 2-D doubly complementary digital 
lattice filter pair 
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Fig. 3 The passband and stopband regions in the first quarter plane 
 

 

Fig. 4 The magnitude response of the designed 2-D SHP recursive DC 
digital lattice filter G(z1,z2) 

 

Fig. 5 The phase response of the designed denominator )( 212
z,zLN  

 

 

Fig. 6 The absolute phase error   |),()(| 21
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