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Abstract—A uniquely restricted matching is defined to be a
matching M whose matched vertices induces a sub-graph which has
only one perfect matching. In this paper, we make progress on the
open question of the status of this problem on interval graphs (graphs
obtained as the intersection graph of intervals on a line). We give
an algorithm to compute maximum cardinality uniquely restricted
matchings on certain sub-classes of interval graphs. We consider two
sub-classes of interval graphs, the former contained in the latter, and
give O(|E|2) time algorithms for both of them. It is to be noted that
both sub-classes are incomparable to proper interval graphs (graphs
obtained as the intersection graph of intervals in which no interval
completely contains another interval), on which the problem can be
solved in polynomial time.
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I. INTRODUCTION

THIS work focuses on two objects: Interval Graphs and

Uniquely Restricted Matchings. A graph is an interval

graph, as defined in [3] and characterized in [2], if it can

be obtained as the intersection graph of intervals on a line.

Interval graphs are used to represent resource allocation

problems in operations research and scheduling theory. In

these applications, each interval represents a request for a

resource (such as a processing unit of a distributed computing

system or a room for a class) for a specific period of time.

A matching in a graph is a set of edges in which no two

edges shares an end point. Matchings have been researched

extensively for many years. Lovasz and Plummer [10] have

written a book dedicated to matchings. A uniquely restricted
matching is defined to be a matching M whose matched

vertices induces a subgraph which has only one perfect

matching.

Given a matrix A, let A′ be a matrix obtained by rearranging

rows and columns of A. The size of largest upper triangular

sub-matrix with non-zeros on the diagonal among all matrices

A′ is shown to be a lower bound on the rank of A [7]. This

problem of finding such a non-zero upper triangular matrix

is formulated equivalently in [7]. Since this formulation,

the problem of determining a uniquely restricted matching

attracted the attention of researchers and was studied in depth

in [4]. This work showed that the problem of computing a

maximum uniquely restricted matching is NP-Complete for

arbitrary, bipartite and split graphs while for proper interval,
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trees, cacti and threshold graphs it can be computed in linear

time. Levit and Mandrescu [8] showed that unicycle graphs

having only uniquely restricted maximum matchings can be

recognized in polynomial time and presented some poly time

algorithms for the same in [9]. The technique of mapping a

matching in a bipartite graph to one in a digraph has been

successfully used in the context of the forcing set problem.

In [12], it has been extended to show that determining a

uniquely restricted matching in a bipartite graph is equivalent

to recognizing an acyclic digraph. Specifically, the work by

Penso, Dieter and Souza [11] showed a characterisation of

graphs in which maximum matching are uniquely restricted

and proved that corresponding graphs can be recognized in

polynomial time. Uniquely restricted matching include the

so-called strong matchings or induced matchings of [1], [5],

[6].

A. Our Results

In [4], the authors posed the following problem – “Is it

possible to determine a maximum uniquely restricted matching

in a given interval graph?”. In this work, we address special

cases of this open problem. First, we give an O(|E|2) time

algorithm for the sub-class of interval graphs where all

the structures given in Fig. 1 are not present as maximal

sub-graphs. We then show an O(|E|2) time algorithm which

works even if only the third structure given in Fig. 1

is disallowed. It is to be noted that both sub-classes are

incomparable to proper interval graphs (graphs obtained

as the intersection graph of intervals in which no interval

completely contains another), on which the problem can be

solved in polynomial time [4]. The sub-classes considered

are recognizable in polynomial time (O(|V |5)), just by a

brute-force search.

B. Organization

In Section II, we present the preliminaries and notation

required to describe the algorithms. We also formally define

the sub-classes of interval graphs we will give algorithms for.

In Section III, we present sub-routines used by the algorithm

for one of the sub-classes and the formal proof of correctness

of the algorithm, which itself is described in Section IV. In

Sections V and VI, we provide further sub-routines and show

how to modify the algorithm to work for the second sub-class

and provide the proof of the same. In Section VII, we present

our conclusions.
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II. PRELIMINARIES

A. Definitions
1) Interval Graph:
A graph is an interval graph, as defined in [3], if it can be

obtained as the intersection graph of intervals on a line. It has

one vertex for each interval and an edge between every pair of

vertices corresponding to intersecting intervals. A graph is an

interval graph if and only if it is chordal and its complement

is a comparability graph [3]. Formally, given a set of intervals

{Ii}1≤i≤k, the corresponding interval graph is G = (V,E),
where V = {vi | 1 ≤ i ≤ k} and E = {(vi, vj) | Ii∩Ij �= φ}.

If the underlying interval set {Ii}1≤i≤k satisfies the property

that Ii �⊆ Ij for all i �= j, then the interval graph is said to be

a proper interval graph.
2) Restricted Interval Graph:
We call an interval graph a Type-I Restricted Interval

graph if it has no maximal sub-graphs(induced sub-grahs)
isomorphic to the graphs (a) and (b) in Fig. 1, and a

Type-II Restricted Interval graph if it has no maximal

sub-graphs(induced sub-grahs) isomorphic to the third of the

graphs in Fig. 1. It is to be noted that these sub-classes of

interval graphs is incomparable with the class of graphs which

may have such maximal sub-graphs(induced sub-grahs), for

there exist Type-I and Type-II restricted interval graphs which

are not proper interval graphs.
3) Uniquely Restricted Matching:
Let G = (V,E) be a graph. A set of edges M ⊆ E is said be

a matching if no two edges of M share a vertex. An alternating
cycle with respect to a matching M is a set of edges which

forms a cycle and alternate edges of the cycle belong to the

matching. A matching M in a graph G is said to be uniquely
restricted if there is no other matching of the same size on

the vertices spanned by M . A uniquely restricted matching M
in a graph G M is said to be a maximum uniquely restricted
matching if there is no other uniquely restricted matching in

G of larger size.
The following result is known.
Theorem 1: [4] Let G be an interval graph and M a

matching on G. M is uniquely restricted if and only if there

is no alternating cycle of length four with respect to M .

B. Notation
For any n ∈ N, [n] = {1, . . . , n}. For any (ordered) set S,

the i’th element is accessed as S[i]. We denote by Ii = (�i, ri)
a real interval indexed by i with left and right end points �i
and ri respectively, �i ≤ ri, �i, ri ∈ R. For any two intervals

Ii and Ij , with 1i < j, we define the segment Ii,j = Ii ∩ Ij .

Testing whether two intervals have a non-empty intersection

can be done as:

Ii,j �= φ ⇐⇒ (�i − rj ≤ 0) ∧ (�j − ri ≤ 0) (1)

Let ri,j (redp. �i,j) denote the right (resp. left) end point

of the segment Ii,j , if 2Ii,j �= φ, that is, ri,j = max
x∈Ii,j

x

1This can be assumed without loss of generality to ensure a unique
nomenclature for an interval. In general, Imin{i,j},max{i,j} = Ii ∩ Ij =
Ij ∩ Ii.

2We can assume that ri,j and �i,j is undefined when Ii,j = φ.

(
resp. �i,j = min

x∈Ii,j
x

)
. When Ii,j �= φ,

ri,j = min {ri, rj} (2)

�i,j = max {�i, �j} (3)

Consider an interval graph G = (V,E). Without loss of

generality, let V = {v1, . . . , vn} and E = {ei,j}i<j,i,j∈[n],

where we 3associate (implicitly) vertex vi ∈ V with an interval

Ii and edge ei,j = (vi, vj) with the segment Ii,j . The edges in

E are indexed by k, that is, E =
{
ek
}
1≤k≤|E|. We have that

for each k ∈ [|E|], ek = ei(k),j(k) for some i(k) and j(k).

C. Intuition

The main idea is to try a block-wise sweep of the graph

and decide to take edges or drop them as we go. The crucial

element is the ordering we impose on the edges. Section

III presents an ordering which suffices to deal with Type-I

restricted interval graphs. In Section IV, we refine the ordering

to work for Type-II restricted interval graphs. It is also a

question as to whether the block-wise sweep would work for

the entire class of interval graphs.

III. SUB-ROUTINES USED BY THE ALGORITHM FOR

TYPE-I RESTRICTED INTERVAL GRAPHS

A. Compare

Algorithm 1 returns true if the first tuple is

lexicographically lower than the second. Clearly, Algorithm

Algorithm 1 Algorithm to compare tuples

1: procedure COMPARE((i, j), (i′, j′))
2: if i < i′ then
3: return true
4: if (i = i′) ∧ (j < j′) then
5: return true
6: return false

1 runs in time O(1).

B. Pre-Processing the Edge Set

Algorithm 2 processes the graph G = (V,E) to obtain

a processed edge set E∗. The processing sets up, for each

edge, a tuple containing the right end points of the intervals

whose segment is the edge and the edge and interval indices.

Formally, for k ∈ [|E|], corresponding to the edge ek ∈
E, which, by the definition ek = ei(k),j(k), is an edge

between the vertices vi(k) and vj(k) (which correspond to

intervals Ii(k) and Ij(k) respectively), we create the tuple

êk =
(
ri(k), rj(k), k, i(k), j(k)

)
. The reason for the choice

of those components in the processed edge set will be clear

from the ordering defined in Section V-C – some of these

components are not necessary for the algorithm for Type-I

Restricted Interval Graphs, however, we are re-using this
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Algorithm 2 Algorithm for Pre-processing the Edge set

1: procedure PRE-PROCESS(G = (V,E))
2: E∗ = φ� E∗ denotes the processed set of edges in G
3: for k in [|E|] do
4: êk =

(
ri(k), rj(k), k, i(k), j(k)

)
5: E∗ = E∗ ∪ {

êk
}

6: return E∗

sub-routine and hence include all necessary components here

itself.

Clearly, Algorithm 2 runs in time O(|V | + |E|), since

this can be done alongside the recognition algorithm for the

interval graph G.

C. Type-I Ordering the Edge Set

We induce an ordering on E in the following way. We define

for ei,j , ei′,j′ ∈ E, ei,j �= ei′,j′ ,

ei,j ≺ ei′,j′ ⇐⇒ ri,j < ri′,j′∨(ri,j = ri′,j′∧(i, j) < (i′, j′))
(4)

Note that this ordering is well defined and defined for every

pair of edges in E. Also, it is easy to see that ei,j ≺ ei′,j′ ⇐⇒
ei′,j′ �≺ ei,j .

We describe an algorithm to set up such a total order

on E. We order the edges of the graph by working on the

processed set E∗. Algorithm 3 mimics the simple sequential

sort algorithm while using the order relation defined by (4). It

generates a sorted processed edge list L. For a tuple element

êk =
(
ri(k), rj(k), k, i(k), j(k)

)
of E∗, we use the following

notation to access individual components: êk[1] = ri(k),
êk[2] = rj(k), ê

k[3] = k, êk[4] = i(k) and êk[5] = j(k). The

list L is indexed in a similar manner. Clearly, Algorithm 3 sets

up a total order on E as described before. The correctness of

the algorithm follows in a straight-forward manner from (4).

Also, Algorithm 3 runs in time O (|E|2).

D. Growing a Matching

Algorithm 4 checks whether an edge can be added to a

matching so that the resulting set of edges is also a matching.

The algorithm simply checks whether any of the edges already

present share a vertex with the edge to be newly added. This

algorithm assumes all edges to be provided in processed form.

Clearly, Algorithm 4 runs in time O(|M∗|).

E. Check for Length Four Alternating Cycles

Algorithm 5 checks whether an edge can be added to a

matching so that the resulting set of edges does not contain

any length four alternating cycle with respect to the augmented

set of edges. The algorithm simply checks whether any of the

edges already present share can form such a cycle with the

edge to be newly added. This algorithm assumes all edges to

be provided in processed form. Clearly, Algorithm 5 runs in

3Every interval graph has an equivalent interval representation which can be
obtained in linear time as described in [4]. The intervals which we associate
can be assumed to be the canonical intervals output by the algorithm.

Algorithm 3 Algorithm for Type-I Ordering the Pre-processed

Edge set

1: procedure ORDERI (E∗)

2: L = φ � L denotes the ordered set of edges in G
3: for k in [|E∗|] do
4: L[k] = êk

5: for k1 in [|E∗| − 1] do
6: êk1 = L [k1]
7: for k2 in {i+ 1, . . . , |E∗|} do
8: êk2 = L [k2]
9: if min

{
êk1 [1], êk1 [2]

}
> min

{
êk2 [1], êk2 [2]

}
then

10: swap L [k1] and L [k2] � from (4)

11: if min
{
êk1 [1], êk1 [2]

}
= min

{
êk2 [1], êk2 [2]

}
then

12: if COMPARE((êk1 [4], êk1 [5]), (êk2 [4], êk2 [5]))
= false then

13: swap L [k1] and L [k2] � from (4)

14: return L� L is the ordered set of edges of the graph

Algorithm 4 Algorithm to check for a matching

1: procedure IS-MATCHING(M∗, êk)

2: for k1 in [|M∗|] do
3: êk1 = M∗ [k1]
4: if êk1 [4] = êk[4]∨ êk1 [4] = êk[5]∨ êk1 [5] = êk[4]∨

êk1 [5] = êk[5] then
5: return false
6: return true

time O(|M∗|), if testing the membership of an edge in E can

be done in O(1) time. This is possible since one can just set

up a |V | × |V | binary indicator matrix for the edge set of the

graph in O (|E|2) time while pre-processing and look it up

while testing for membership. We omit such details for the

ease of exposition.

IV. THE ALGORITHM FOR TYPE-I RESTRICTED INTERVAL

GRAPHS

Given a Type-I restricted interval graph G = (V,E), we

induce an ordering on E as in (4). We now discuss the

algorithm, given as Algorithm 6, to compute a maximum

uniquely restricted matching in a restricted interval graph.

Clearly M returned by Algorithm 6 is a matching. And by

Theorem 1, M returned by Algorithm 6 is a uniquely restricted

matching. Clearly, M is also a maximal uniquely restricted

matching. We only have to show that M is maximum.

We prove this as follows. Suppose that there is a uniquely

restricted matching M ′ with |M ′| > |M |. Then, we know

that

M ′ = M \ (M −M ′) ∪ (M ′ −M)

that is, we can obtain M ′ from M by removing certain edges

(those in M − M ′) and adding others (those in M ′ − M ).

Clearly, in this transformation, no removed edge is added back.

Also, since |M ′| > |M |, we must add more vertices than we
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Algorithm 5 Algorithm to check for length four alternating

cycles

1: procedure NO-4-CYCLE(E,M∗, êk)

2: for k1 in [|M∗|] do
3: êk1 = M∗ [k1]
4: i = êk1 [4], j = êk1 [5]
5: i′ = êk[4], j′ = êk[5]
6: if (ei,i′ ∈ E ∧ ej,j′ ∈ E) ∨ (ei,j′ ∈ E ∧ ej,i′ ∈ E)

then
7: return false
8: return true

1

2

3

4

(a)

2

1 4

3

5

(b)

1

2 3

4

(c)

Fig. 1 Maximal subgraphs not present in the restricted interval graphs under
consideration

have removed, that is, |M −M ′| < |M ′ −M |. We claim that

this is not possible. In fact, we claim that for any �, it is not

possible to remove � edges and add (� + 1) (different) edges

to obtain a new uniquely restricted matching in order to prove

the correctness of the algorithm.

Lemma 1: Suppose M is a uniquely restricted matching

and M ′ ⊆ M . Then M ′ is also a uniquely restricted matching.

Proof: Suppose to the contrary that M ′ is not a uniquely

restricted matching. By Theorem 1, G has an alternating

cycle of length four with respect to M ′. The same cycle

would be present with respect to M as well since M ′ ⊆ M ,

which means that M is not a uniquely restricted matching, by

Theorem 1, a contradiction.

Lemma 2: Suppose M is a matching, ei,j , ei′,j′ ∈ M , each

of i, j, i′, j′ are distinct. Then, Ii,j ∩ Ii′,j′ �= φ if and only

if the sub-graph induced by i, j, i′, j′ is isomorphic to K4,

the complete graph on four vertices if and only if there is

an alternating cycle of length four with respect to M in the

sub-graph induced by i, j, i′, j′.
Proof: Consider the sub-graph induced by the vertices

i, j, i′, j′. Now, Ii,j ∩ Ii′,j′ = Ii ∩ Ij ∩ Ii′ ∩ Ij′ �= φ. This

is true if and only if every pair of intervals overlap and the

sub-graph is isomorphic to K4. As M is a matching, every

Algorithm 6 Algorithm for a Maximum Uniquely Restricted

Matching in Type-I Restricted Interval Graphs

1: procedure MAXURM(G = (V,E))
2: E∗ = PRE-PROCESS(G)
3: L = ORDER

I (E∗)
4: ct = 1 � ct denotes the number of edges in our

matching

5: M∗[ct] = L[1] � M∗ denotes the list of processed

edges in our matching

6: for k in {2, . . . , |E∗|} do � k denotes the index of

the currently inspected edge

7: if IS-MATCHING (M∗, L[k]) = true then
8: if NO-4-CYCLE (E,M∗, L[k]) = true then
9: ct = ct+ 1

10: M∗[ct] = L[k]

11: M = φ� M denotes the set of edges in our matching

12: for k in [|M∗|] do
13: êk = M∗ [k]
14: k̂ = êk[3]

15: M = M ∪ {ek̂}
16: return M � M is a maximum uniquely restricted

matching

edge in this sub-graph other than ei,j , ei′,j′ do not belong to

M and equivalently there is an alternating cycle of length four

with respect to M in the sub-graph induced by i, j, i′, j′.
Lemma 3: Let e, e′, e′′ be edges in the interval graph G

satisfying e ≺ e′ ≺ e′′ and e′′ forms an alternating cycle of

length four with e. Then, e′′ also forms an alternating cycle

of length four with e′.
Proof: Suppose e = ei,j , e′ = ei′,j′ and e′′ = ei′′,j′′ . By

Lemma 2, Ii,j∩Ii′′,j′′ �= φ. Since e ≺ e′ ≺ e′′, Ii′,j′∩Ii′′,j′′ �=
φ and by Lemma 2, e′′ forms an alternating cycle of length

four with e′.
Lemma 4: Suppose M was returned by Algorithm 6, and

for � ≤ |M |, e1,0 ≺ . . . ≺ e�,0 ∈ M and there exist e1,1 ≺
. . . ≺ e�+1,1 �∈ M . Then, M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is

not a uniquely restricted matching.

Proof: Suppose to the contrary that M \ {ei,0}1≤i≤� ∪
{ei,1}1≤i≤�+1 is a uniquely restricted matching. Consider the

edges e1,1 ≺ . . . ≺ e�+1,1 �∈ M . Each of them was dropped

either because adding them meant that we no longer had a

matching or because an alternating cycle of length four was

formed. Note that we check for the matching invariant first,

followed by checking for length four alternating cycles. Let

S1 ⊆ {ei,1}1≤i≤�+1 denote the set of edges which were

dropped because adding them meant we no longer had a

matching and let S2 = {ei,1}1≤i≤�+1 \ S1 denote the set

of edges which were dropped because adding them created a

length four alternating cycle (they do not violate the matching

invariant, however). Let ei,1 = eji,ki for each i.
We define the notion of a witness for an edge in

{ei,1}1≤i≤�+1 as for all 1 ≤ i ≤ �+ 1, e ∈ M is the witness
for ei,1 being dropped if ei,1 was dropped as it shared a vertex

with edge e ∈ M and hence adding it meant that we no longer

had a matching, or ei,1 was dropped as it formed a length four
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alternating cycle with e ∈ M .

Let wi ∈ M denote the witness for ei,1. We prove ahead that

each of the witnesses must be distinct. Since we are removing

only � edges from M , viz., {ei,0}1≤i≤�, at least one witness

remains and the presence of a witness will either violate the

matching invariant or induce a length four alternating cycle

which means that M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a

uniquely restricted matching. Hence, it only remains to show

that for all i �= i′, wi �= wi′ . Let wi = ejwi ,kwi for each i.

a) Case 1: Consider ei,1, ei
′,1 ∈ S1. Without loss of

generality, assume ei,1 ≺ ei
′,1. Suppose wi = wi′ = w =

ejw,kw
. If ei,1, ei

′,1 share a vertex, clearly M \ {ei,0}1≤i≤� ∪
{ei,1}1≤i≤�+1 is not a matching and hence not a uniquely

restricted matching, which would be a contradiction. Hence,

ei,1, ei
′,1 do not share any vertex. Hence, ji, ki, ji′ , ki′ are

all distinct. If Iji,ki
∩ Iji′ ,ki′ �= φ, by Lemma 2, there

is an alternating cycle of length four with respect to M \
{ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 and hence M \ {ei,0}1≤i≤� ∪
{ei,1}1≤i≤�+1 is not a uniquely restricted matching, which

would be a contradiction. Hence, Iji,ki ∩ Iji′ ,ki′ = φ.

By Lemma 2, the sub-graph induced by ji, ki, ji′ , ki′ is

not isomorphic to K4. The sub-graph contains the edges

(ji, ki) , (ji′ , ki′). We also know that the sub-graph also

contains the vertices jw, kw. Let p ∈ {jw, kw} be the vertex

shared by w, ei
′,1. Then, it is easy to see that Ip ∩ Iji �= φ

and Ip ∩ Iki
�= φ. This would mean that the sub-graph is

isomorphic to one of the graphs in Fig. 1, which cannot be

the case. Hence, wi �= wi′ .
b) Case 2: Consider ei,1, ei

′,1 ∈ S2. Suppose wi =
wi′ = w = ejw,kw . Note that ei,1, ei

′,1 did not violate the

matching invariant and hence they share no vertex with any

of the edges in M . Hence, ei,1, w share no vertices and ei
′,1, w

share no vertices. Let Mi = M ∪ {ei,1}. We know that Mi

is a matching and that there is an alternating cycle of length

four in the sub-graph spanned by the vertices ji, ki, jw, kw,

which are all distinct. By Lemma 2, Iji,ki
∩ Ijw,kw

�= φ.

On a similar account, Iji′ ,ki′ ∩ Ijw,kw �= φ. Combining,

we have Iji,ki ∩ Iji′ ,ki′ �= φ. By Lemma 2 applied on

M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1, we obtain that there is a

length four alternating cycle on the sub-graph induced by

the vertices ji, ki, jw, kw, which by Theorem 1 implies that

M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a uniquely restricted

matching, a contradiction. Hence, wi �= wi′ .
c) Case 3: Consider ei,1 ∈ S1, e

i′,1 ∈ S2. Suppose

wi = wi′ = w = ejw,kw
. If ei,1, ei

′,1 share a vertex,

clearly M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a matching

and hence, not a uniquely restricted matching, which would

be a contradiction. Hence, ei,1, ei
′,1 do not share any vertex.

Hence, ji, ki, ji′ , ki′ are all distinct. If Iji,ki
∩ Iji′ ,ki′ �=

φ, by Lemma 2, there is an alternating cycle of length

four with respect to M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 and

hence M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a uniquely

restricted matching, which would be a contradiction. Hence,

Iji,ki ∩ Iji′ ,ki′ = φ. By Lemma 2, the sub-graph induced by

ji, ki, ji′ , ki′ is not isomorphic to K4. The sub-graph contains

the edges (ji, ki) , (ji′ , ki′). We also know that the sub-graph

also contains the one of the vertices jw, kw. Let p ∈ {jw, kw}
be the vertex shared by w, ei

′,1. Then, it is easy to see that

Ip ∩ Iji �= φ and Ip ∩ Iki �= φ. This would mean that the

sub-graph is isomorphic to one of the graphs in Fig. 1, which

cannot be the case. Hence, wi �= wi′ .
d) Case 4: Consider ei,1 ∈ S2, e

i′,1 ∈ S1. Suppose

wi = wi′ = w = ejw,kw
. If ei,1, ei

′,1 share a vertex,

clearly M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a matching

and hence not a uniquely restricted matching, which would

be a contradiction. Hence, ei,1, ei
′,1 do not share any vertex.

Hence, ji, ki, ji′ , ki′ are all distinct. If Iji,ki
∩ Iji′ ,ki′ �=

φ, by Lemma 2, there is an alternating cycle of length

four with respect to M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 and

hence M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a uniquely

restricted matching, which would be a contradiction. Hence,

Iji,ki ∩ Iji′ ,ki′ = φ. By Lemma 2, the sub-graph induced by

ji, ki, ji′ , ki′ is not isomorphic to K4. The sub-graph contains

the edges (ji, ki) , (ji′ , ki′). We also know that the sub-graph

also contains the one of the vertices jw, kw. Let p ∈ {jw, kw}
be the vertex shared by w, ei

′,1 and let u ∈ {jw, kw} with

p �= u. Then, it is easy to see that Iu∩Iji �= φ and Iu∩Iki �= φ.

This would mean that the sub-graph is isomorphic to the

second graph in Fig. 1, which cannot be the case. Hence,

wi �= wi′ .
This exhausts all the cases and shows that for all i �= i′,

wi �= wi′ , completing the proof.
Theorem 2: Let G be a restricted interval graph. M output

by Algorithm 6 is a maximum uniquely restricted matching of

G.
Proof: Suppose to the contrary that there is a uniquely

restricted matching M ′ with |M ′| > |M |. Then, we know that

M ′ = M \ (M −M ′) ∪ (M ′ −M). Also, since |M ′| > |M |,
|M −M ′| < |M ′ −M |. Let |M −M ′| = � ≤ |M | and let X
be a subset of (M ′ − M) such that |X| = � + 1. Since M ′

is a uniquely restricted matching, by Lemma 1, so is M ′′ =
M \ (M − M ′) ∪ X . However, by Lemma 4, M ′′ is not a

uniquely restricted matching, which is a contradiction.
Theorem 2 proves the correctness of Algorithm 6. The time

complexity is analyzed as follows. The initial ordering of the

edges can be obtained in O(|E|2) time. Each iteration of the

while loop can be performed in O(|E|) time (the detection

of the matching invariant as well as the alternating cycle of

length four must only be done for the newly added edge with

each of the existing edges). Hence, the algorithm runs in time

O (|E|2), which is polynomial time.

V. MORE SUB-ROUTINES USED BY THE ALGORITHM FOR

TYPE-II RESTRICTED INTERVAL GRAPHS

A. Growing Intervals
Algorithm 7 takes a set of intervals and produces an

equivalent set of intervals (in terms of their intersection

graphs) such that every interval is as long as it can be, that is,

if it were extended in either direction, the intersection graph

defined by the intervals would change. Clearly, Algorithm 7

runs in time O(n2).

B. Single-Argmax
Algorithm 8 returns the index of an element of a collection

which is the maximum. We assume the set S can be indexed.
Clearly, Algorithm 8 runs in time O(|S|).
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Algorithm 7 Algorithm to Elongate Intervals

1: procedure ELONGATE(V ) �
V = {vi}ni=1 = {Ii}ni=1 = {(�i, ri)}ni=1

2: for k in [n− 1] do
3: for k′ in {k + 1, . . . , n} do
4: if rk > rk′ then
5: swap Ik and Ik′ � Sort the intervals in

order of their right-end points

6: for k from n− 1 to 1 do
7: min = rn� min denotes minimum left-end point a

later interval would have

8: for k′ in {k + 1, . . . , n} do
9: if (�k′ < min) ∧ (�k′ > rk) then

10: min = �k′

11: if rk < min then
12: rk = min− ε � ε is an extremely small

positive parameter, that is ε → 0
� Repeat the entire procedure viewing left as right

and vice-versa

13: for k in [n− 1] do
14: for k′ in {k + 1, . . . , n} do
15: if �k < �k′ then
16: swap Ik and Ik′

17: for k from n− 1 to 1 do
18: max = �n � max denotes maximum right-end

point a previous interval would have

19: for k′ in {k + 1, . . . , n} do
20: if (rk′ > max) ∧ (rk′ < �k) then
21: max = rk′

22: if �k > max then
23: �k = max+ ε

24: return {Ii}ni=1

Algorithm 8 Algorithm to compute a Single-argmax

1: procedure SINGLE-ARGMAX(S)

2: max = 1� max denotes an index of S which contains

the maximum element

3: for k in {2, . . . , |S|} do
4: if S[k] > S[max] then
5: max = k
6: return max

C. Type-II Ordering the Edge Set

We induce a partial ordering on E in the following way.

We define for ei,j , ei′,j′ ∈ E, ei,j �= ei′,j′ ,

ei,j ≺ ei′,j′ ⇐ ri,j < ri′,j′ (5)

To set up a total order on E, we break ties in the following

way. Consider two edges corresponding to segments having

the same right end point. If one of the intervals involved has a

unique farthest right end point, then the segment constructed

from it is considered to occur later in the ordering. Formally,

ei,j ≺ ei′,j′ ⇐ ri,j =

ri′,j′ ∧
(
{i, j} ∩ argmax

i,j,i′,j′
{ri, rj , ri′ , rj′} = φ

)
(6)

Any further ties are broken arbitrarily. In this way, we extend

the partial order to a total order, ≺, on E, ensuring that ei,j ≺
ei′,j′ ⇐⇒ ei′,j′ �≺ ei,j .

We describe an algorithm to set up such a total order

on E. We order the edges of the graph by working on the

processed set E∗. Algorithm 9 mimics the simple sequential

sort algorithm while using the order relation defined by (5)

and (6). It generates a sorted processed edge list L. For

a tuple element êk =
(
ri(k), rj(k), k, i(k), j(k)

)
of E∗, we

use the following notation to access individual components:

êk[1] = ri(k), êk[2] = rj(k), êk[3] = k, êk[4] = i(k) and

êk[5] = j(k). The list L is indexed in a similar manner.

Algorithm 9 Algorithm for Type-II Ordering the

Pre-processed Edge set

1: procedure ORDERII (E∗)

2: L = φ � L denotes the ordered set of edges in G
3: for k in [|E∗|] do
4: L[k] = êk

5: for k1 in [|E∗| − 1] do
6: êk1 = L [k1]
7: for k2 in {i+ 1, . . . , |E∗|} do
8: êk2 = L [k2]
9: if min

{
êk1 [1], êk1 [2]

}
> min

{
êk2 [1], êk2 [2]

}
then

10: swap L [k1] and L [k2] � from (5)

11: if min
{
êk1 [1], êk1 [2]

}
= min

{
êk2 [1], êk2 [2]

}
then

12: maxright =
SINGLE-ARGMAX

({
êk1 [1], êk1 [2], êk2 [1], êk2 [2]

})
13: if maxright ≤ 2 then
14: swap L [k1] and L [k2] � from (6)

15: return L� L is the ordered set of edges of the graph

Clearly, Algorithm 9 sets up a total order on E as

described before. The correctness of the algorithm follows in

a straight-forward manner from (5) and (6). Also, Algorithm

9 runs in time O (|E|2).

VI. THE ALGORITHM FOR TYPE-II RESTRICTED

INTERVAL GRAPHS

We now discuss the algorithm, given as Algorithm 10 ,

to compute a maximum uniquely restricted matching in a

restricted interval graph. As before, M is also a maximal

uniquely restricted matching. We only have to show that M is

maximum. We claim that for any �, it is not possible to remove

� edges and add (� + 1) (different) edges to obtain a new

uniquely restricted matching in order to prove the correctness

of the algorithm.

Lemma 5: Suppose M was returned by Algorithm 10, and

for � ≤ |M |, e1,0 ≺ . . . ≺ e�,0 ∈ M and there exist e1,1 ≺
. . . ≺ e�+1,1 �∈ M . Then, M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is

not a uniquely restricted matching.
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Algorithm 10 Algorithm for a Maximum Uniquely Restricted

Matching in Type-II Restricted Interval Graphs

1: procedure MAXURM(G = (V,E))
2: V ∗ = ELONGATE(V )
3: E∗ = PRE-PROCESS(G∗ = (V ∗, E))
4: L = ORDER

II (E∗)
5: ct = 1 � ct denotes the number of edges in our

matching

6: M∗[ct] = L[1] � M∗ denotes the list of processed

edges in our matching

7: for k in {2, . . . , |E∗|} do � k denotes the index of

the currently inspected edge

8: if IS-MATCHING (M∗, L[k]) = true then
9: if NO-4-CYCLE (E,M∗, L[k]) = true then

10: ct = ct+ 1
11: M∗[ct] = L[k]

12: M = φ� M denotes the set of edges in our matching

13: for k in [|M∗|] do
14: êk = M∗ [k]
15: k̂ = êk[3]

16: M = M ∪ {ek̂}
17: return M � M is a maximum uniquely restricted

matching

Proof: Suppose to the contrary that M \ {ei,0}1≤i≤� ∪
{ei,1}1≤i≤�+1 is a uniquely restricted matching. Consider the

edges e1,1 ≺ . . . ≺ e�+1,1 �∈ M . Each of them was dropped

either because adding them meant that we no longer had a

matching or because an alternating cycle of length four was

formed. Note that we check for the matching invariant first,

followed by checking for length four alternating cycles. Let

S1 ⊆ {ei,1}1≤i≤�+1 denote the set of edges which were

dropped because adding them meant we no longer had a

matching and let S2 = {ei,1}1≤i≤�+1 \ S1 denote the set

of edges which were dropped because adding them created a

length four alternating cycle (they do not violate the matching

invariant, however). Let ei,1 = eji,ki
for each i.

We define the notion of a witness for an edge in

{ei,1}1≤i≤�+1 as for all 1 ≤ i ≤ �+1, e ∈ M is the witness for

ei,1 being dropped if ei,1 was dropped as it shared a vertex

with a edge e ∈ M and hence adding it meant that we no

longer had a matching, or ei,1 was dropped as it formed a

length four alternating cycle with e ∈ M .

Let wi ∈ M denotes the witness for ei,1. We prove

ahead that each of the witnesses must be distinct. Since

we are removing only � edges from M , viz., {ei,0}1≤i≤�,

at least one witness remains and the presence of a witness

will either violate the matching invariant or induce a length

four alternating cycle which means that M \ {ei,0}1≤i≤� ∪
{ei,1}1≤i≤�+1 is not a uniquely restricted matching. Hence,

it only remains to show that for all i �= i′, wi �= wi′ . Let

wi = ejwi ,kwi for each i. We stress here that it is the witness
seen by the calls to IS-MATCHING and NO-4-CYCLE, and
in that order, and the witness being found by inspecting the
ordered set of matched edges.

ei,1

ei
′,1

w

q

p

s

t

Fig. 2 Sub-graph induced by ji, ki, ji′ , ki′ in Case 1

a) Case 1: Consider ei,1, ei
′,1 ∈ S1. Without loss of

generality, assume ei,1 ≺ ei
′,1. Suppose wi = wi′ = w =

ejw,kw
. Then, we know that w ≺ ei,1 ≺ ei

′,1. If ei,1, ei
′,1

share a vertex, clearly M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is

not a matching and hence not a uniquely restricted matching,

which would be a contradiction. Hence, ei,1, ei
′,1 do not share

any vertex. Hence, ji, ki, ji′ , ki′ are all distinct. If Iji,ki
∩

Iji′ ,ki′ �= φ, by Lemma 2, there is an alternating cycle of

length four with respect to M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1

and hence M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a uniquely

restricted matching, which would be a contradiction. Hence,

Iji,ki
∩ Iji′ ,ki′ = φ. By Lemma 2, the sub-graph induced by

ji, ki, ji′ , ki′ is not isomorphic to K4. The sub-graph contains

the edges (ji, ki) , (ji′ , ki′). We also know that the sub-graph

also contains the vertices jw, kw. Let p ∈ {jw, kw} be the

vertex shared by w, ei
′,1. Then, it is easy to see that Ip∩Iji �=

φ and Ip ∩ Iki
�= φ. This would mean that the sub-graph is

isomorphic to the graph in Fig. 2.

Consider the case in Fig. 2. Let q ∈ {jw, kw} with q �= p,

t ∈ {ji′ , ki′} with t �= p, and s ∈ {ji, ki} with s �= q. Then,

we have

rp,q ≤ rq,s (7)

Since we have assumed that ei,1 ≺ ei
′,1 and since Iji,ki

∩
Iji′ ,ki′ = φ, we have �ji′ ,ki′ > rji,ki , that is,

�p,t > rq,s (8)

Since there is an edge between the vertices p and t, the

corresponding intervals Ip and It intersect. From (1), we have

(�p − rt ≤ 0) ∧ (�t − rp ≤ 0), and hence

rp ≥ �t (9)

Since there is no edge between the vertices t and s, the

corresponding intervals It and Is do not intersect. From (1),

we have (�t − rs > 0) ∨ (�s − rt > 0). If �s − rt > 0, then

rp,t ≤ rt < �s ≤ �q,s ≤ rq,s

which implies from (5) that ei
′,1 ≺ ei,1, which is a

contradiction. Hence

�t > rs (10)

Since there is no edge between the vertices t and q, the

corresponding intervals It and Iq do not intersect. From (1),

we have (�t − rq > 0) ∨ (�q − rt > 0). If �q − rt > 0, then

rji′ ,ki′ ≤ rt < �q ≤ �ji,ki
≤ rji,ki
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which implies from (5) that ei
′,1 ≺ ei,1, which is a

contradiction. Hence

�t > rq (11)

From (9) and (11), rp,q = rq . From (7), rq ≤ rs and hence

rq,s = rq . Now, from (6), ei,1 ≺ w, which is a contradiction.

Hence, wi �= wi′ .

b) Case 2: Consider ei,1, ei
′,1 ∈ S2. Suppose wi =

wi′ = w = ejw,kw . Note that ei,1, ei
′,1 did not violate the

matching invariant and hence they share no vertex with any

of the edges in M . Hence, ei,1, w share no vertices and ei
′,1, w

share no vertices. Let Mi = M ∪ {ei,1}. We know that Mi

is a matching and that there is an alternating cycle of length

four in the sub-graph spanned by the vertices ji, ki, jw, kw,

which are all distinct. By Lemma 2, Iji,ki ∩ Ijw,kw �= φ.

On a similar account, Iji′ ,ki′ ∩ Ijw,kw �= φ. Combining,

we have Iji,ki
∩ Iji′ ,ki′ �= φ. By Lemma 2 applied on

M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1, we obtain that there is a

length four alternating cycle on the sub-graph induced by

the vertices ji, ki, jw, kw, which by Theorem 1 implies that

M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a uniquely restricted

matching, a contradiction. Hence, wi �= wi′ .

c) Case 3: Consider ei,1 ∈ S1, e
i′,1 ∈ S2. Suppose

wi = wi′ = w = ejw,kw
. If ei,1, ei

′,1 share a vertex, clearly

M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a matching and

hence not a uniquely restricted matching, which would be

a contradiction. Hence, ei,1, ei
′,1 do not share any vertex.

Hence, ji, ki, ji′ , ki′ are all distinct. If Iji,ki ∩ Iji′ ,ki′ �= φ,

by Lemma 2, there is an alternating cycle of length four

with respect to M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 and

hence M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a uniquely

restricted matching, which would be a contradiction. Hence,

Iji,ki ∩ Iji′ ,ki′ = φ. By Lemma 2, the sub-graph induced by

ji, ki, ji′ , ki′ is not isomorphic to K4. The sub-graph contains

the edges (ji, ki) , (ji′ , ki′). We also know that the sub-graph

also contains one of the vertices jw, kw. Let s ∈ {jw, kw} be

the vertex shared by w, ei,1 and let u ∈ {jw, kw} with s �= u.

Then, it is easy to see that the sub-graph is isomorphic to

one of the graphs in Fig. 3.

d) Case 3 (a): Consider the case in Fig. 3(a)4. Let q ∈
{ji, ki} with q �= s, and t ∈ {ji′ , ki′} with t �= p. As in Case

1 (a), we have

rs,u ≤ rq,s (12)

�p,t > rq,s (13)

rp ≥ �t (14)

�t > rs (15)

�t > rq (16)

Since there is an edge between the vertices t and u, the

corresponding intervals It and Iu intersect. From (1), we have

(�t − ru ≤ 0) ∧ (�u − rt ≤ 0) and hence

ru ≥ �t (17)

4This case is disallowed, however, we show that it does not arise anyway.

ei,1

ei
′,1

w

q

p u

s

t

(a)

ei,1

ei
′,1
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t
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(c)

Fig. 3 Partial Sub-graph (ep,q and eq,u may be present) induced by
ji, ki, ji′ , ki′ , jw, kw (not all unique) in Case 3

From (15) and (17), rs,u = rs. From (12), rs ≤ rq
and hence rq,s = rs. From (16) and (17), ru > rq . Now,

from (6), ei,1 ≺ w, which is a contradiction. Hence, wi �= wi′ .

e) Case 3 (b): Consider the case in Fig. 3(b). As in Case

3 (a), we have

�t > rq (18)

ru ≥ �t (19)

Since there is an edge between the vertices t and s, the

corresponding intervals Is and It intersect. From (1), we have

(�s − rt ≤ 0) ∧ (�t − rs ≤ 0) and hence

rs ≥ �t (20)

From (18) and (19), ru > rq . From (18) and (20), rs > rq .

Hence, rq < rs,u and rq,s = rq . Hence, rq,s < rs,u. Now,

from (6), ei,1 ≺ w, which is a contradiction. Hence, wi �= wi′ .

f) Case 3 (c): Consider the case in Fig. 3(c)5. Since there

is an edge between the vertices t and p, the corresponding

intervals Ip and It intersect. From (1), we have (�p − rt ≤ 0)∧
(�t − rp ≤ 0) and hence

rt ≥ �p (21)

Since there is no edge between the vertices p and u, the

corresponding intervals Ip and Iu do not intersect. From (1),

we have (�p − ru > 0) ∨ (�u − rp > 0). Assume �p > ru. As

in Case 3 (b),

ru ≥ �t (22)

�t > rq (23)

5This case is disallowed, however, we show that it does not arise anyway.
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rs ≥ �t (24)

From (21), (22), (23) and our assumption, rt > rq ≥ �q =⇒
rt ≥ �q . Again, from (23) and (24), rs > rq . Hence, rq,s = rq .

As in Case 3 (a),

rs,u ≤ rq,s (25)

From (25), rq ≥ ru. From (21), rq ≥ �t. From (1),

we have that the intervals q and t intersect, which is a

contradiction. Assume �u > rp. Then, rp < �u ≤ ru.

Since there is an edge between the vertices s and u, the

corresponding intervals Is and Iu intersect. From (1), we have

(�s − ru ≤ 0) ∧ (�u − rs ≤ 0) and hence

rs ≥ �u (26)

From (26) and our assumption, rp < ru. Hence, rp < rs,u.

Since there is an edge between the vertices t and u, the

corresponding intervals It and Iu intersect. From (1), we have

(�t − ru ≤ 0) ∧ (�u − rt ≤ 0) and hence

rt ≥ �u (27)

From (27) and our assumption, rp < rt. Hence, rp = rp,t.
Hence, rp,t < rs,u. Now, from (6), ei

′,1 ≺ w, which is a

contradiction. Hence, wi �= wi′ .

g) Case 4: Consider ei,1 ∈ S2, e
i′,1 ∈ S1. Suppose

wi = wi′ = w = ejw,kw
. If ei,1, ei

′,1 share a vertex, clearly

M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a matching and

hence not a uniquely restricted matching, which would be

a contradiction. Hence, ei,1, ei
′,1 do not share any vertex.

Hence, ji, ki, ji′ , ki′ are all distinct. If Iji,ki
∩ Iji′ ,ki′ �= φ,

by Lemma 2, there is an alternating cycle of length four

with respect to M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 and

hence M \ {ei,0}1≤i≤� ∪ {ei,1}1≤i≤�+1 is not a uniquely

restricted matching, which would be a contradiction. Hence,

Iji,ki
∩ Iji′ ,ki′ = φ. By Lemma 2, the sub-graph induced

by ji, ki, ji′ , ki′ is not isomorphic to K4. The sub-graph

contains the edges (ji, ki) , (ji′ , ki′). We also know that

the sub-graph also contains the one of the vertices jw, kw.

Let p ∈ {jw, kw} be the vertex shared by w, ei
′,1 and let

u ∈ {jw, kw} with p �= u. Then, it is easy to see that

Iu ∩ Iji �= φ and Iu ∩ Iki
�= φ. This would mean that the

sub-graph is isomorphic to the graph in Fig. 4.

Consider the case in Fig. 4(a)6. Let q ∈ {ji, ki} with q �= s,

and t ∈ {ji′ , ki′} with t �= p. Since there is no edge between

the vertices p and s, the corresponding intervals Ip and Is do

not intersect. If �s − rp > 0, then

rp,t ≤ rp < �s ≤ �q,s ≤ rq,s

which implies from (5) that ei
′,1 ≺ ei,1, which is a

contradiction. Hence

�p > rs (28)

Since there is an edge between the vertices p and q, the

corresponding intervals Ip and Iq intersect. From (1), we have

(�p − rq ≤ 0) ∧ (�q − rp ≤ 0) and hence

rq ≥ �p (29)

6This case is disallowed, however, we show that it does not arise anyway.
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Fig. 4 Partial Sub-graph induced by ji, ki, ji′ , ki′ , jw, kw (not all unique)
in Case 4

From (28) and (29), rs < rq . Hence, rq,s = rs. As in Case 1

(a),

�t > rs (30)

rp ≥ �t (31)

From (30) and (31), rs < rp. Since there is an edge between

the vertices p and u, the corresponding intervals Ip and Iu
intersect. From (1), we have (�p − ru ≤ 0) ∧ (�u − rp ≤ 0)
and hence

ru ≥ �p (32)

From (28) and (32), rs < ru. Hence, rs < rp,u, that is, rq,s <
rp,u. Now, from (6), ei,1 ≺ w, which is a contradiction. Hence,

wi �= wi′ .

Consider the case in Fig. 4(b). As in Case 1 (a),

rp ≥ �t (33)

�t > rs (34)

�t > rq (35)

Since there is no edge between the vertices t and u, the

corresponding intervals It and Iu do not intersect. From (1),

we have (�t − ru > 0) ∨ (�u − rt > 0). If �u − rt > 0, then

rji′ ,ki′ ≤ rt < �u ≤ �jw,kw
≤ rjw,kw

which implies from (5) that ei
′,1 ≺ w, which is a contradiction.

Hence

�t > ru (36)

From (33), (34), (35) and (36), rp = max{rp, rq, rs, ru}.

Since w ≺ ei,1,

rp,u ≤ rq,s (37)

From (33) and (36), ru < rp. Hence rp,u = ru. Assume

rp,u < rq,s. This is true inspite of the call to the ELONGATE
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algorithm. Hence, there must exist an interval α with ru <
�α ≤ rq,s. Since there is an edge between the vertices q and

u, the corresponding intervals Iq and Iu intersect. From (1),

we have (�q − ru ≤ 0) ∧ (�u − rq ≤ 0) and hence

ru ≥ �q (38)

Since there is an edge between the vertices s and u, the

corresponding intervals Is and Iu intersect. From (1), we have

(�s − ru ≤ 0) ∧ (�u − rs ≤ 0) and hence

ru ≥ �s (39)

From (38), �q < �α ≤ rα. Also, �α ≤ rq,s =⇒ �α ≤
rq . From (1), we have that the intervals q and α intersect.

From (39), �s < �α ≤ rα. Also, �α ≤ rq,s =⇒ �α ≤ rs.

From (1), we have that the intervals s and α intersect. Since

�α > ru, from (1), we have that the intervals u and α do not

intersect. Thus, the sub-graph induced by the vertices q, s, u
and α is isomorphic to the third graph in Fig. 1, which is a

contradiction. Hence, wi �= wi′ . This exhausts all the cases

and shows that for all i �= i′, wi �= wi′ , completing the proof.

Theorem 3: Let G be a restricted interval graph. M output

by Algorithm 10 is a maximum uniquely restricted matching

of G.

Proof: Suppose to the contrary that there is a uniquely

restricted matching M ′ with |M ′| > |M |. Then, we know that

M ′ = M \ (M −M ′) ∪ (M ′ −M). Also, since |M ′| > |M |,
|M −M ′| < |M ′ −M |. Let |M −M ′| = � ≤ |M | and let X
be a subset of (M ′ − M) such that |X| = � + 1. Since M ′

is a uniquely restricted matching, by Lemma 1, so is M ′′ =
M \ (M − M ′) ∪ X . However, by Lemma 5, M ′′ is not a

uniquely restricted matching, which is a contradiction.

Theorem 3 proves the correctness of Algorithm 10. The

time complexity is analyzed as follows. The elongation of

intervals can be done in O(|V |2) time. The initial ordering of

the edges can be obtained in O(|E|2) time. Each iteration of

the while loop can be performed in O(|E|) time (the detection

of the matching invariant as well as the alternating cycle of

length four must only be done for the newly added edge with

each of the existing edges). Hence, the algorithm runs in time

O (|E|2), which is polynomial time.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have considered two sub-classes of

interval graphs and described poly time algorithms for each,

which solve the problem of computing a maximum uniquely

restricted matching for both sub-classes. This makes progress

on the question as to whether maximum uniquely restricted

matchings of interval graphs can be determined in polynomial

time. However, the exact complexity of this problem on

interval graphs remains an open question. The structures

described in Fig. 1 have the property that at most one edge can

be chosen from them in any uniquely restricted matching. The

difficulty lies in the choice of which of the edges are taken

in order to obtain a maximum uniquely restricted matching. If

indeed the problem is NP-Complete, these structures should

qualify as hard instances since locally, a choice of an edge

from such a structure would determine the global outcome of

the algorithm as maximum or not. It is also interesting to note

that only the last case of the proofs really need restrictions on

the graph while the other cases go through just based on the

ordering.

REFERENCES

[1] Kathie Cameron. Induced matchings. Discrete Applied Mathematics,
24(1):97–102, 1989.

[2] Paul C Gilmore and Alan J Hoffman. A characterization of
comparability graphs and of interval graphs. Canad. J. Math,
16(539-548):4, 1964.

[3] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs,
volume 57. Elsevier, 2004.

[4] Martin Charles Golumbic, Tirza Hirst, and Moshe Lewenstein. Uniquely
restricted matchings. Algorithmica, 31(2):139–154, 2001.

[5] Martin Charles Golumbic and Renu C Laskar. Irredundancy in circular
arc graphs. Discrete Applied Mathematics, 44(1):79–89, 1993.

[6] Martin Charles Golumbic and Moshe Lewenstein. New results on
induced matchings. Discrete Applied Mathematics, 101(1):157–165,
2000.

[7] Daniel Hershkowitz and Hans Schneider. Ranks of zero patterns and
sign patterns. Linear and Multilinear Algebra, 34(1):3–19, 1993.

[8] Vadim E Levit and Eugen Mandrescu. Unicycle graphs and
uniquely restricted maximum matchings. Electronic Notes in Discrete
Mathematics, 22:261–265, 2005.

[9] Vadim E Levit and Eugen Mandrescu. On unicyclic graphs with
uniquely restricted maximum matchings. Graphs and Combinatorics,
29(6):1867–1879, 2013.
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