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AAbstract—In this paper, a thorough review about dual-cubes, DCn, 
the related studies and their variations are given. DCn was introduced 
to be a network which retains the pleasing properties of hypercube Qn 
but has a much smaller diameter. In fact, it is so constructed that the 
number of vertices of DCn is equal to the number of vertices of Q2n

+1. However, each vertex in DCn is adjacent to n + 1 neighbors and 
so DCn has (n + 1) × 22n edges in total, which is roughly half the 
number of edges of Q2n+1. In addition, the diameter of any DCn is 2n
+2, which is of the same order of that of Q2n+1. For self-
completeness, basic definitions, construction rules and symbols are 
provided. We chronicle the results, where eleven significant theorems 
are presented, and include some open problems at the end.

Keywords—Hypercubes, dual-cubes, fault-tolerant 
hamiltonian property, dual-cube extensive networks, dual-cube-like 
networks.

I. INTRODUCTION

THE hypercube family Qn is one of the most well-known

interconnection networks in parallel computers due to

its many pleasing properties such as vertex/edge symmetry, 
recursive structure, easy routing, high degree of fault tolerance, 
and so on. See [1]–[3]. However, Qn does not have the smallest 
diameter possible for its resources, which results in the less 
efficiency and cost-effectivity of interprocessor 
communication. Therefore, a variety of hypercube-like 
interconnection networks has been introduced to achieve a 
lower diameter by exchanging or “twisting” the endvertices of 
some edges. These hypercube variations, including Twisted 
cubes, Multiple-twisted cubes, Crossed cubes, Flip MCubes, 
Mo¨bius cubes etc., have a diameter of roughly n/2, which is 
half the diameter of Qn. A comparison of diameters among 
these networks can be found in [4]. On the other hand, the 
dual-cube family DCn for n ≥ 1, introduced by Li and Peng [5], 
is able to achieve the similar diameter of Qn with much less 
edges. Li et al. make 2n+1 copies of Qn and divide them into 
two classes, Class 0 and Class 1. Each class consists of 2n copies 
of Qn and each copy is called a cluster. By properly adding 
edges, they connect every pair of clusters from the opposite 
classes with an edge and prove that DCn is a (n + 1)-regular, 
vertex symmetric graph that contains some properties superior 
to hypercubes.
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   Notice that the number of vertices of DCn is equal to the 
number of vertices of Q2n+1. Since each vertex in Q2n+1 is 
adjacent to 2n + 1 neighbors, the total number of edges of 
Q2n+1 is (2n + 1) × 22n. However, each vertex in DCn is 
adjacent to n + 1 neighbors and so DCn has (n + 1) × 22n 

edges in total. Although any dual-cube DCn has much less 
edges than the hypercube Q2n+1, its diameter, 2n + 2, is of 
the same order of the diameter of Q2n+1, which is 2n + 1. 
In addition, it is proved that DCn is vertex symmetric, and 
any DCn is a spanning subgraph of Q2n+1 for n ≥ 1.

Ever since DCn was introduced, it attracts many studies. 
See [6]–[9], for instance. In addition, researchers extend the 
main structure of DCn to invent new variations of network 
topologies with nice properties. In this paper, we chronicle 
these results and include some open problems. This paper is 
organized as follows. In Section II, for self-completeness, 
notations, the precise definitions of Qn and DCn are given. In 
Section III, we recall the hamiltonian properties of DCn 
and fault-tolerant hamiltonicities of DCn. In Section 
IV, the dual-cube extensive networks, abbreviated as 
DCENs, dual-cube-like networks, and their associated nice 
properties will be reviewed. Finally, a brief conclusion is 
given in Section V.

II. PRELIMINARY: HYPERCUBES AND DUAL-CUBES

Throughout this paper, we follow [10] for the graph

definitions and notations. The sets of vertices and edges of a

graph G are denoted by V (G) and E(G), respectively. The

cardinality of V (G) is denoted by |V (G)|. Two vertices u,v
of G are adjacent in G if there is an edge e = (u, v) ∈ E(G)
between u and v. The degree of a vertex u is the number

of vertices adjacent to u. A graph G is r-regular if the

degree of any vertex of G is r. A path P between two

vertices v0 and vk is represented by P = 〈v0, v1, . . . , vk〉,
where every two consecutive vertices are connected by

an edge. We also write the path P = 〈v0, v1, . . . , vk〉 as

〈v0, v1, . . . , vi, P ′, vj , vj+1, . . . , vk〉, where P ′ denotes the

path 〈vi, vi+1, . . . , vj〉. A hamiltonian path between u and

v, where u and v are two distinct vertices of G, is a path

joining u to v that visits every vertex of G exactly once. A

cycle is a path of at least three vertices such that the first

vertex is the same as the last vertex. A hamiltonian cycle of

G is a cycle that traverses every vertex of G exactly once.

A hamiltonian graph is a graph with a hamiltonian cycle.
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Fig. 1 Hypercubes Q1, Q2, and Q3

A graph G is connected if there is a path between any two

distinct vertices in G and is hamiltonian connected if there is

a hamiltonian path between any two distinct vertices in G.

A graph H is bipartite if V (H) = B ∪ W and E(H)
is a subset of {(u, v)|u ∈ B, v ∈ W}. If |B| = |W |, then

H is a balanced bipartite graph. Let H be an arbitrary

balanced bipartite graph. Since any hamiltonian path in H
consists of the same number of vertices of the two partite

sets, there exists no hamiltonian path between two vertices

belonging to the same partite set of H . Thus H is not

hamiltonian connected. We say that a bipartite graph H is

hamiltonian laceable if there is a hamiltonian path between

any two distinct vertices from the opposite partite sets of H .

In the sequel, all graphs, bipartite or nonbipartite, are simple

and undirected. And for bipartite graphs, we only consider

balanced bipartite ones.

An n-dimensional hypercube Qn is a graph with the vertex 
set {0, 1}n and there is an edge between any two vertices 
that differ in exactly one bit position. The label {0, 1}n of 
each vertex of Qn is called the vertex id. See Fig. 1 for an 
illustration.

The dual-cube family, DCn, n ≥ 1, was first introduced by

Li and Peng [5]. A dual-cube DCn is obtained from a basic

component Qn as follows. Make 2n+1 copies of Qn and divide

them into two classes, Class 0 and Class 1. Each class consists

of 2n copies of Qn and each copy is called a cluster. We shall

label the 2n clusters in each class by {0, 1}n, called the cluster
id. Then any vertex u ∈ V (DCn) is given a vertex id, which is

a (2n+1)-bit sequence of the form u = (u2n, u2n−1, . . . , u0),
according to the following rule:

(1) u ∈ Class 0 :

0

Cluster id
︷ ︸︸ ︷

u2n−1u2n−2 . . . un
︸ ︷︷ ︸

n bits

Vertex id in Qn
︷ ︸︸ ︷

un−1un−2 . . . u0
︸ ︷︷ ︸

n bits

;

(2) u ∈ Class 1 :

1

Vertex id in Qn
︷ ︸︸ ︷

u2n−1u2n−2 . . . un
︸ ︷︷ ︸

n bits

Cluster id
︷ ︸︸ ︷

un−1un−2 . . . u0
︸ ︷︷ ︸

n bits

.

Given two vertices u = (u2n, u2n−1, . . . , u0) and v =
(v2n, v2n−1, . . . , v0). There is an edge between u and v in
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Fig. 2 Dual-cubes DC2

DCn if and only if the following conditions are satisfied:

• u and v differ in exactly one bit position i, where 0 ≤
i ≤ 2n;

• if 0 ≤ i ≤ n− 1, then u2n = v2n = 0;

• if n ≤ i ≤ 2n− 1, then u2n = v2n = 1.

The example of DC2 is shown in Fig. 2. By the definition of 
DCn, we can see that |V (DCn)| = 22n+1 and the degree of 
each vertex in DCn is n + 1, in which n edges are within the 
cluster and one edge reaches a vertex in some cluster of the 
other class. There is no edge between the clusters of the same 
class. The edges connecting two clusters of distinct classes 
are called cross-edges. If two vertices are in the same cluster, 
or belong to two clusters of distinct classes, the distance 
between the two vertices is equal to the Hamming distance 
(the number of bits where the two vertex id’s have different 
values). Otherwise, it is equal to the Hamming distance plus 
two: one for entering a cluster of the other class and one for 
leaving. Moreover, it is easy to see that DCn is a bipartite 
graph for any integer n with n ≥ 1.

III. PROPERTIES OF DUAL-CUBES

In this section, many results about fault-tolerant hamiltonian

properties for DCn will be presented. We shall start from

definitions. A graph G is k-vertex-fault-tolerant hamiltonian
(resp. k-edge-fault-tolerant hamiltonian) if G − F remains

hamiltonian for any subset F of V (G) (resp. F as a

subset of E(G)) with |F | ≤ k, where k ≤ δ(G) − 2
and δ(G) denotes the minimum degree of G. A graph

G is k-vertex-fault-tolerant hamiltonian connected (resp.

k-edge-fault-tolerant hamiltonian connected) if G − F is

hamiltonian connected for any subset F of V (G) (resp. F as

a subset of E(G)) with |F | ≤ k, where k ≤ δ(G) − 3. A

graph G is k-fault-tolerant hamiltonian (resp. k-fault-tolerant
hamiltonian connected) if G − F is hamiltonian (resp.

hamiltonian connected) for any subset F belonging to

V (G) ∪ E(G), where |F | ≤ k and k ≤ δ(G) − 2 (resp.

k ≤ δ(G) − 3). For bipartite graphs, a hamiltonian laceable

graph H is k-edge-fault-tolerant hamiltonian laceable if

H − F remains hamiltonian laceable for any subset F of

E(H) with |F | ≤ k and k ≤ δ(G)− 3.
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In 2002, Li et al. proved that for n ≥ 2, DCn contains

a fault-free hamiltonian cycle even if it contains up to

n − 1 faulty edges. Later on, in 2005, they showed that

there exists a fault-free cycle containing at least 22n+1 − 2f
vertices in DCn, where n ≥ 3 and f ≤ n is the number of

faulty vertices. See [11] and [9] for details. Inspired by the

above-mentioned works, Lai et. al in 2008 defined high-level

k-cycles and proved the following theorem [7].

Definition 1. A cycle of 〈u0, v0, u1, v1, . . . , uk−1, vk−1, uk〉 is

called to be a high-level k-cycle if (ui, vi) is an edge inside

a cluster and (vi, ui+1) is an edge connecting two nodes in

two clusters of distinct classes. Here Cui �= Cuj for i �= j,

0 ≤ i, j ≤ k − 1, and uk = u0.

Theorem 1. For n ≥ 3, every vertex of DCn lies on a cycle

of every even length from 4 to 22n+1, inclusive. Note that

DCn is a bipartite graph, it contains no odd cycle.

The idea of high-level k-cycles turns out to be very easily

applied in studying issues related to cycle embedding in

dual-cubes and its variations. Theorem 1 implies that DCn is

vertex-bipancyclic, which is especially useful in the network

broadcasting and message transmissions. More specifically, a

network with DCn as its underlying topology can use any

vertex as the center, and the center can transmit messages to

a circle with the required length such that news (or resources)

can be more efficiently distributed (or utilized).

In 2010, Shih and his coauthors studied the existence

of mutually independent hamiltonian cycles in DCn [12].

The concept of mutually independent hamiltonian cycles

arises from the following application [10]. If k pieces of

data must be sent from a message center u, and the data

must be processed at each intermediate receiver (and the

process takes time) before they are sent back to the center,

then the existence of mutually independent cycles from

u guarantees that there will be no waiting time for the

parallel processing. More precisely, given a graph G, let

〈v0, v1, v2, . . . , v|V (G)|−1, v0〉 be a hamiltonian cycle of G.

By saying G has l mutually independent hamiltonian cycles,

we mean that for any vertex v0 of G, there exist hamiltonian

cycles of the form 〈v0, vk1 , vk2 , . . . , vk|V (G)|−1, v0〉 such that

vki �= vk
′

i wherever k �= k′ for 1 ≤ k ≤ l. It is obvious that

the number of mutually independent hamiltonian cycles of a

graph is bounded by its minimum degree δ(G). In [12], the

following theorem for DCn is derived.

Theorem 2. For n ≥ 2, DCn has n+1 mutually independent

hamiltonian cycles. The result is optimal since each vertex of

DCn has only n+ 1 neighbors.

Processors of a multiprocessor system are connected

according to a given interconnection network design. It is

inevitable to have failures of certain network components. For

this reason, various fault-tolerant measures have been studied

in the literature, such as fault diameter, fault hamiltonicity,

faul pancyclicity, fault hamiltonian laceabiliy, etc.. See [14]

and its references. On the other hand, it is reasonable to

assume that the possibility of all faulty elements being

adjacent to the same node (vertex) is nearly zero. Thus the

concept of conditionally faulty tolerance arises. Namely, any

fault-tolerant property is discussed under the assumption

that each node is incident with at least two fault-free links

(edges). It was shown in [14], [15] that a k-ary, k ≥ 3,

n-dimensional hypercube(resp. an hypercube Qn) contains a

fault-free hamiltonian cycle even if there exists up to 4n− 5
(resp. 2n− 5) faulty links. With this result for Qn, Chen and

Tsai proved the following theorem for dual-cubes [13], which

is optimal with respect to the number of tolerant edge faults.

Theorem 3. For n ≥ 2, DCn contains a fault-free hamiltonian

cycle provided fe ≤ 2n− 3 and every vertex is incident with

at least two fault-free edges, where fe denotes the number of

faulty edges in DCn.

Recently, 1-perfect codes constitute a significant field

of study due to their wide applications in multiprocessor

systems, and a number of other areas in the digital world.

Readers can refer to [16] and its references. They have the

capability to detect two or fewer errors, and even correct

a single error. Among various types of 1-perfect codes,

the Hamming codes, based on the topology of hypercubes,

are the most well-known ones. Meanwhile the question of

determining whether a given graph supports a 1-perfect code

is a NP-complete problem even for planar 3-regular graphs.

By saying that a graph G supports a 1-perfect code, it means

there exists a subset C of V (G) such that the 1-balls centered

at the vertices if C form a partition of V (G). In 2015, P. Jha

derived the theorem below [16].

Theorem 4. For n ≥ 2, DCn admits a 1-perfect code if and

only if n = 2k − 2 for k ≥ 2.

The result in Theorem 4 parallels the existence of hamming

codes on the hypercube Qn. In [16], Jha further developed

an algorithm for a vertex partition of Q(n+1) into hamming

codes using a Latin square, and showed that Theorem 4 leads

to tight bounds on domination numbers of dual-cubes and

exchanged hypercubes.

IV. DCENS AND DUAL-CUBE-LIKE NETWORKS

In 2010, the authors introduced a new kind of graphs,

called dual-cube extensive networks, abbreviated as DCENs.

See [17]. The idea of DCEN comes from dual-cubes. Instead

of using the hypercube Qn as its basic component as in

DCn, DCEN(G) takes any graph G as the basic component

and is then obtained by the similar structure as in DCn.

Let the graph G with V (G) = n be the basic component of

DCEN(G) and the vertices of G be labeled from 1 to n. Then

DCEN(G) consists of two classes, Class 1 and Class 2. For

i ∈ {1, 2}, Class i has n copies of G, namely Gi,1, . . . , Gi,n,

and each Gi,j is called a cluster. We shall label any vertex in

Gi,j of DCEN(G) by (i, j, k), where k is the vertex id in G.

The vertices (i, j, k) and (i′, j′, k′) are adjacent in DCEN(G)
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Fig. 3 An example for DCEN(G) where G = K3

if and only if one of the following conditions is satisfied:

(1) i = i′, j = j′, and the vertices k and k′ are adjacent in G;

(2) |i− i′| = 1, j = k′, and k = j′.

An example of DCEN is depicted in Fig. 3. The edges 
satisfying (2) are cross-edges, which connect different pairs 
of clusters belonging to the two classes. Vertices in a certain 
cluster use cross-edges to reach vertices in distinct clusters 
in the opposite class. Therefore, by regarding each cluster 
as a vertex, DCEN(G) becomes a complete bipartite graph 
Kn,n. Every cross-edge has the corresponding endvertices 
in the two clusters of the opposite classes. For example, 
the cross-edge connecting the clusters G1,i and G2,j has 
endvertices (1, i, j) ∈ G1,i and (2, j, i) ∈ G2,j . It was 
shown in [17] that if G is a nonbipartite graph, then so 
is DCEN(G). Besides, if H is a bipartite graph, then so 
is DCEN(H). The following four theorems are derived in [17].

Theorem 5. Let a graph G with |V (G)| ≥ 3 be the

basic component of DCEN(G). If G is a nonbipartite and

hamiltonian connected graph, then DCEN(G) is hamiltonian

connected.

Theorem 6. Let a bipartite graph H with |V (H)| ≥ 4 be

the basic component of DCEN(H). If H is a hamiltonian

laceable graph, then DCEN(H) is hamiltonian laceable.

Theorem 7. Let a graph G with |V (G)| ≥ 4 be the basic

component of DCEN(G). If G is a nonbipartite, hamiltonian

connected, and globally 3*-connected graph, then DCEN(G)

is globally 3*-connected.

Theorem 8. Let a balanced bipartite graph H with |V (H)| ≥ 6
be the basic component of DCEN(H). If H is a hamiltonian

laceable, and globally bi-3*-connected graph, then DCEN(H)

is globally bi-3*-connected.

In Theorems 7 and 8, a nonbipartite graph G is said to

be globally 3*-connected if for any given pair of distinct

vertices {u, v} of G, there exist three paths {Pi|i = 1, 2, 3}
such that Pi ∩ Pj = {u, v} for i �= j and ∪3

i=1Pi = V (G).
A balanced bipartite graph H is globally bi-3*-connected if

there exists a set of three paths {P ′
i |i = 1, 2, 3} between any

two distinct vertices {b, w} from the opposite partite sets of

H , and P ′
i ∩ P ′

j = {b, w} for i �= j and ∪3
i=1P

′
i = V (H).

The existence of globally r*-connectivity in interconnection

networks allows messages being processed simultaneously

and independently. The above four theorems show that the

nice properties of the basic component (G or H) are well

preserved by making copies of the basic component and

properly adding links using the skeleton of DCn. Theorems

and applications about globally r*-connectivity can be found

in Chapter 14 of [10].

In 2013, Angjeli et al. introduced another variation of dual

cubes [18], which they called dual-cube-like networks. Rather

than giving freedom in choosing the basic component as of

DCENs, they give freedom in choosing edges between distinct

clusters. More specifically, a graph DCL(n) is a dual-cube-like

network of order n if it has the following structure:

• DCL(n) consists of 2n disjoint copies of the

(n − 1)-dimensional hypercube with additional edges

only between different copies of hypercubes. These

hypercubes are called clusters of DCL(n), and the edges

between them are called cross edges.

• Every vertex of DCL(n) is incident to exactly one cross

edge, so the cross edges form a perfect matching of

DCL(n).

• Between any two different clusters of DCL(n) there is

at most one cross edge, and if we define the underlying

graph (basic component) as we did for DCn, we get

a 2n−1-regular, maximally connected graph (this could

be K2n−1,2n−1 or some other graph satisfying these

conditions).

It is obvious that DCn is in fact a special case of DCL(n).

And even if one restricts the underlying graph to be a

complete bipartite graphs, dual-cube-like networks still offer

a much larger class of graphs. To present the main results of

[18], some terminologies have to be defined. A non-complete

graph G with at least r + 1 vertices is r-connected if the

removal of any set of at most r vertices results in a connected

graph. A complete graph with r + 1 vertices is k-connected

for k ≤ r. An r-regular graph is maximally connected if

it is r-connected. If an r-regular graph G is maximally

connected and has the property that for every T ⊂ V with

|T | = r the graph G − T is either connected or has two

components, one of which is a singleton, then G is called

tightly super-connected. The following theorems about the

fault-tolerant connectivity of DCL(n) were proved in [18].

Theorem 9. Let n be an integer with n ≥ 3. Then any

dual-cube-like network of order n, DCL(n), is maximally

connected. Moreover, it is tightly super-connected.

Theorem 10. Let n and k be integers such that n ≥ 3 and

1 ≤ k ≤ n − 1. Let DCL(n) be a dual-cube-like network of

order n and T ⊂ V (DCL(n)). If |T | ≤ kn − (k(k + 1))/2
, then DCL(n) − T is either connected or it has a large

connected component and small components with at most

k − 1 vertices in total. Moreover, there is a set of vertices

T in DCL(n) such that |T | = kn − k(k + 1)/2 + 1 and
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DCL(n)− T has a component containing exactly k vertices.

Theorem 10 already gave the largest m for which a

dual-cube-like network is super m-connected of order k − 1,

and the result is sharp for k ≤ n. In [18], this theorem

was applied to derive additional results such as the cyclic

vertex-connectivity and the restricted vertex-connectivity of

DCL(n).

V. CONCLUSION

In this paper, a thorough review about dual-cubes, the

related studies and its variations is given. We start from the

very basic definition about how it was constructed from the

well-known hypercube topology, and then present many nice

properties of hypercubes which are preserved in dual-cubes.

We also review two different interconnection networks based

on the idea of dual-cubes, namely DCENs and DCL(n),

and their properties about hamiltonian connectivity and

fault-tolerant connectivities. Obviously, many issues remain

open for dual-cubes and its variations. For example, the

existence of ordered hamiltonian cycles/paths with or without

faulty elements, the globally r*-connectivity (or globally

bi-r*-connectivity) for r ≥ 4 under possible edge/vertex faults,

the preservation of 1-perfect codes on DCENs, DCL(n) or

other variations. These are all interesting topics and need

further investigations.
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