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Abstract—Many optimization techniques available in the
literature have been developed in order to solve the problem of voltage
stability enhancement in power systems. However, there are a number
of drawbacks in the use of previous techniques aimed at determining
the optimal location and size of reactive compensators in a network. In
this paper, an Improved Cuckoo Search algorithm is applied as an
appropriate optimization algorithm to determine the optimum location
and size of a Static Var Compensator (SVC) in a transmission network.
The main objectives are voltage stability improvement and total cost
minimization. The results of the presented technique are then
compared with other available optimization techniques.
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I. INTRODUCTION

URING the last decade, a particular focus has been
directed toward power system stability problems, with
researchers developing and improving a number of techniques
aimed at solving such problems. A SVC is a shunt-connected
Static Var generator/load whose output can be adjusted in order
to swap capacitive or inductive current and thus maintain or
control specific power system variables. Different types of
evolutionary computation optimization technique, such as
Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
and Harmony Search Algorithm (HS), have already been used
to find optimal solutions for the location and size of SVCs in
power systems [1]-[9].
In the present study, an improved version of a recent
metaheuristic optimization technique known as the Cuckoo
Search (CS) algorithm is applied to determine the optimal
placement and sizing of shunt reactive power compensators,
focusing on SVC, in transmission networks. CS is a technique
based on cuckoo reproduction in a population of birds [10]. A
comparative study between a genetic algorithm and CS in a
design space exploration optimization problem is presented in
[11], while the application of a CS algorithm for optimal
capacitor placement in radial distribution systems is presented
n [12]. Investigations have also shown that the improved CS
(ICS) can be more accurate and exhibit a more rapid
convergence capacity than the conventional CS algorithm [13].
In the present paper, modal analysis is applied to determine the
sensitive buses subjected to drive the transmission system to a
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voltage instability state; the ICS algorithm is then applied in
order to determine the optimal location and size of an SVC in
the power transmission system. Voltage profile, voltage
stability improvement and total cost are considered as objective
functions with which to control the power system performance.

II. PROBLEM FORMULATION

A.Modal Analysis

The static voltage stability of a system can be controlled by
analyzing the eigenvalue of the Jacobian matrix. Modal (or
eigenvalue) analysis of the Jacobian matrix of the system load
flow equation, near the point of voltage collapse, has been
extensively used to identify buses vulnerable to voltage
collapse and also locations at which to inject reactive power into
the system. The participation of each load in the critical mode
determines the importance of load in voltage collapse, with the
degree of participation determined from an inspection of the
entries of the left eigenvector of the critical mode [7], [8].

In the modal analysis method, the Jacobian matrix of the
operating point of a power system is calculated. For this
purpose, the Power Flow Equation linearized around the
operating point is considered and given as:

3ol =ls 7ol lav ®

where AP represents the incremental change in the bus active
power, AQ is the incremental change in the bus reactive power,
Af is the incremental change in the bus voltage angle, AV is the
incremental change in the bus voltage magnitude, and Jpg, /py,
Joe and Joy are the Jacobian matrix elements representing the
sensitivity of the power flow to bus voltage changes. It is also
important to note that the power system voltage stability
phenomenon is generally affected by the reactive power
variation. Due to that fact, real power is mostly considered
invariant at each operating point. When assuming P is constant,
AP = 0 and (1) thus becomes:

AQ = Jp AV 2

where J is the reduced Jacobian matrix system given by:
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Jr = []QV _]Qe ];el ]PV] (3)

The power network modes can be defined by the eigenvalues
and eigenvectors of [, which can be written as:

Jr=§An “4)

where ¢ and 7 are respectively the right and left eigenvector
matrix of Jp, and A is the diagonal eigenvalue matrix of /5.
The inverse of J5 is thus expressed:

Jrt= §Aay ()
The substitution of (5) into (2) gives:
AV = (§ A1) AQ (6)

or:
av = 3540 A (7

where &; and n; are respectively the ith right and left
eigenvectors of Jp, and A; is the ith eigenvalue. The ith modal
voltage is then expressed as:

MV = 1/3 DQmi ®)
where AQ,,; is the ith modal reactive power variation given by:
AQ,; = K; & )

where k; is a normalization factor such that:
Kf %88 =1 (10)

and &;; is the jth element of &;.

From (8), the stability of mode i with respect to reactive
power changes is defined by the modal eigenvalue A;. The
magnitude of the eigenvalue provides a relative measure of the
proximity of the system to voltage instability [7]. The bus
participation factor that measures the participation of the Ky, bus
in the iy mode can be defined as:

Pri = ki Mire (11)

Using the modal analysis method, critical buses with large
participation factors can be determined and considered as
suitable locations for Var compensator installation [7].

B. Objective Function

In the present work the objective function is to maximize the
voltage stability and minimize the cost of SVC. The objective
function is expressed as:
ﬂ-critical (base)

w Costsyc (12)

Costpax

Minimize F = wy Teritical

where Acriticar (pasey and costy,, are the smallest eigenvalue of
the base case and the maximum cost, respectively, Acritical and

costsyc are the smallest eigenvalue and total SVC cost,
respectively, and w; and W, are the coefficients of the
corresponding objective functions.

III. CuCKOO SEARCH ALGORITHM

As one of the most recently developed nature-inspired
metaheuristic algorithms [14]-[16], the Cuckoo Search
Algorithm was first proposed in 2009 as a multi-objective
optimization technique based on birds with an interesting and
aggressive reproduction strategy. Some cuckoo species lay their
eggs in communal nests for the host birds to hatch, and thus in
order to increase the hatching probability such cuckoos may
have to remove the host eggs and replace them with their own.
If the host bird discovers an alien egg, it will either be thrown
away or the nest will be abandoned [10].

A. Conventional Cuckoo Search Algorithm

The steps involved in the CS process are explained as
follows:

Step 1.Initialization of Population: Essentially starting with an
initial population of n host nests, the CS algorithm is
performed iteratively. In the original proposal, the initial
values of the j" component of the i nest are determined
by:

xij(O) = rand * (Ubii - Lbij) + Lbij‘ (13)
where Ubij and Lbij are the upper and lower bounds of the j™
component, respectively, and rand represents a standard

uniform random number on the open interval (0, 1).

Step 2.Iteration, Evaluation, Selection and Reconstruction: For
each iteration k, a cuckoo egg i is selected randomly and
new solutions xi(k + 1) are generated using the Levy
flight, a random walk whose steps are defined in terms
of step lengths that have a certain probability
distribution, with the directions of the steps being
isotropic and random. The strategy of using Levy flights
is preferred over other simple random walks because it
leads to a better overall CS performance [15]. CS also
uses a balanced combination of a local random walk and
the global explorative random walk, controlled by a
switching parameter pa.

The local random walk can be expressed as:

xf* = x{+o s®H(pa — €)Q(xf — xf) 14

where xjt and x£ are two different solutions selected randomly
by random permutation, H (u) is a Highway-side function, € is
a random number drawn from a uniform distribution, and s is
the step size. In contrast, the global random walk can be
obtained using Levy flights as:

X =xjtec L(s, ) (15)

where:

L(s,A) =

inTA
MBI ¢ 1,550 (16)

X Sl+). 4
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Here o >0 is the step size that should be related to the scales of

the problem of interest.

From a computational standpoint, random numbers are
generated with Levy flights in two steps: The first step consists
of choosing a random direction according to a uniform
distribution, and the second step is the generation of Levy
distribution.

Step 3.Evaluation of Fitness: The CS algorithm evaluates the
fitness of the new solution and compares it with current
one. If the new solution exhibits the best fitness, it
replaces the current one, otherwise the current fitness
remains the best. A fraction of the worst nests is also
abandoned and are replaced by new ones according to
the probability pa, in order to both increase the
exploration search space and to search for more
promising solutions. Furthermore, all current solutions
are ranked according to their fitness for each iteration
step and the best solution stored as the vector Xpes. The
algorithm runs through the objective function until a
stopping criterion is met. Common terminating criteria
are such that a solution is found that satisfies a lower
threshold value, that a fixed number of generations has
been reached, or that successive iterations no longer
produce better results.

B. Improved Cuckoo Search Algorithm

CS parameters are typically kept constant, which
consequently decreases the efficiency of the algorithm. If Pa is
large and o is small, the convergence speed will be high but not
sufficient to find the best solution. Hence Pa and a will change
dynamically with the number of generations, as shown in the
equations below, thus enhancing the drawbacks of the CS
approach.

Pa(gn) = Pamax — % (Pamax — Pamin) (17)
o (gn) =Xpqx exp(c. gn) (18)
¢ = ln (52 (19)

An ICS algorithm involving the Adaptive Method is
presented in [17], aimed at enhancing the refining ability and
convergence rate of CS in order to obtain an optimal solution.
The authors used the self-adaptive technique to control the
scaling factor and find probability, thereby improving
population diversity and averting premature convergence. This
latter study shows that conventional CS is not adaptive, since
the scale factor a is constant. As a result, the authors suggested
its change to become variable, proposing the following new
formula:

Ine¢,, i —In;
min max

e Nmax
RS — (20)

IV. OPTIMAL PLACEMENT AND SIZING OF SvC USING ICS
ALGORITHM

The problem of SVC placement and sizing in a transmission

system can be divided into two sub-problems. In the first step,
modal analysis is used to determine the critical system buses
that are then considered as suitable locations for SVC
installation. In the next step, the ICS algorithm is used to
provide the optimal placement of SVC at the suitable buses,
thereby obtaining maximum voltage stability and cost saving.
The formulation for the total SVC cost in US$/kVar is given by

[7]:
Csye = Y-, 0.0003QZ — 0.3051Q; + 127.38 1)

where Qx is the reactive power capacity of the k™ installed SVC

in MVar.

The procedure for implementing the ICS algorithm to
determine optimal SVC placement and sizing is described in the
following steps:

i.  Read system data.

ii. Form the Jacobian matrix and eigenvalues of the system at
base case.

iii. Calculate eigenvectors and bus participation factor for the
smallest eigenvalue.

iv. Determine buses with large participation factor values and
consider some buses as possible locations for SVC.

v. Initialize ICS parameters including: number of nests (n),
maximum number of generations (N _iter), dimension (ng),
probability (pamin and pam.x for the worst nest to be
abandoned), step size (Omin and omax), lower and upper
bounds (L, and Uy, respectively) of Var compensator.

vi. Initialize the host nests that are represented by integer
variables with Levy Flights.

vii. Calculate the load flow and the smallest eigenvalue for
each nest nj, (n; € n).

viii. Increase the generation counter.

ix. Generate Pa and o using (17)-(19).

x. Obtain other nests from the best nests, via discretization of
Levy Flights given by (15).

xi. Calculate the smallest eigenvalue for each nest.

xii. Increase the generation counter, generate Pa and o.

xiii. Obtain new nests randomly, according to the probability Pa
of worst nests to be abandoned. Pa should be calculated
using (17).

xiv. Calculate the load flow and the smallest eigenvalue of each
nest n;, evaluate the bus sensitivity index.

xv. If the tolerance is higher than the difference between the
two consecutive best fitness solutions or the maximum
iteration is satisfied, the algorithm is ended. Otherwise, go
to step xii.

Fig. 1 describes the process used to solve the problem of SVC
placement and sizing by applying modal analysis and ICS.
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Run base case of load flow and
get the Jacobian matrix and
eigenvalues

Find the most critical buses with
large amount of participation
factor using Modal analysis
method

Initialize ICS
parameters, insert
SVCs at suitable

choosing buses

Calculate the initial fitness .
function Fi e

Calculate the power flow

l
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Find the optimal place
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Fig. 1 Flowchart of proposed ICS algorithm for SVC placement and
sizing

V. CASE STUDY AND RESULTS

In this study, modal analysis was applied in order to
determine the critical parameters of the IEEE 57-bus test system
presented in [8]. Here the eigenvalues of the reduced Jacobian
matrix were generated to obtain the relative proximity of the
system to voltage instability. The smallest eigenvalue of base
case was obtained and found to be 0.2344.

The bus participation factors for the critical mode were also
determined in order to identify the buses that contribute to
voltage instability in the system.

Table I presents the bus participation factor values for the
smallest eigenvalue of the reduced Jacobian matrix of the study
case system.

TABLET
THE MOST CRITICAL BUSES AFTER MODAL ANALYSIS
Bus number 25 30 31 32 33
Participation 0.100 0133 0183 0170  0.174
factor

As shown in Table I, the 5 most critical buses subjected to
drive the 57-bus test system under instability conditions were
found to be buses 24, 30, 31, 32 and 33. These buses were thus
chosen to evaluate the effectiveness of the ICS algorithm. Table
IT shows the results obtained using selected different heuristic
techniques. In the present study the applied parameters were as
follows: n=50, Pa=0.25, 0<Qsvc < 20MVar and number of
iterations=2500. The results obtained using these values were
then compared with those derived from other methods,
including GA, PSO, HS and conventional CS.

TABLEII
RESULTS OF OPTIMAL SVC PLACEMENT AND SIZING USING DIFFERENT
OPTIMIZATION TECHNIQUES

GA PSO HS CS ICS
Bus SVC" Bus SVC Bus SVC Bus SVC Bus SVC
31 9.82 30 3.08 30 387 31 7.18 31 7.02
32 1.88 33 8.48 31 846 32 599 32 927
34 6.03 34 352 32 322 33 510 33 3.93
* SVC size in MVar

Table III presents a comparison between the base case and
the five different optimization techniques after SVC device
installation.

TABLEIII
COMPARISON OF OBJECTIVE FUNCTION COMPONENTS AFTER SVC
INSTALLATION IN THE TEST SYSTEM

Objective Base 54 pso  Hs s Ics
function Case
Smallest 0234 402 3.6l 391 414 515
Eigenvalue
SVC Cost
(1000 $) 0 71 73.7 744 709 67.4
Fitness
function 1.000 0.865 0.855 0.847 0.842 0.829
value

As Table III reveals, the smaller eigenvalue of the ICS
algorithm is higher than those of all four other methods, while
the fitness function and the total cost of SVC installation in the
power system is lower when using ICS than the other
techniques.

Convergence characteristics for the optimal placement and
sizing of SVCs using different heuristics optimization
techniques are given in Fig. 2. According to this figure, the ICS
algorithm provides a better performance, converging more
rapidly than GA, PSO, HS and the conventional CS algorithm.
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Fig. 2 Convergence characteristics of different techniques for optimal
placement and sizing of SVC in the test system

VI. CONCLUSION

A recently developed optimization algorithm known as the
Improved Cuckoo Search Algorithm was here employed to
solve the optimal location and sizing of a SVC in a transmission
network. In order to achieve this objective, modal analysis was
applied to determine critical buses and thus the most critical
locations. Being novel and appropriate for such optimization,
the ICS algorithm was then employed to determine the optimum
location and size of SVCs required for voltage stability
improvement and total cost minimization. The obtained results
show that the proposed metaheuristic algorithm performs better
than other optimization techniques (GA, PSO, HS and the
conventional CS algorithm) in terms of accuracy and speed.
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