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Abstract—In recent years, there has been an explosion in the rate 

of using technology that help discovering the diseases. For example, 
DNA microarrays allow us for the first time to obtain a "global" view 
of the cell. It has great potential to provide accurate medical 
diagnosis, to help in finding the right treatment and cure for many 
diseases. Various classification algorithms can be applied on such 
micro-array datasets to devise methods that can predict the 
occurrence of Leukemia disease. In this study, we compared the 
classification accuracy and response time among eleven decision tree 
methods and six rule classifier methods using five performance 
criteria. The experiment results show that the performance of 
Random Tree is producing better result. Also it takes lowest time to 
build model in tree classifier. The classification rules algorithms such 
as nearest- neighbor-like algorithm (NNge) is the best algorithm due 
to the high accuracy and it takes lowest time to build model in 
classification. 

 
Keywords—Data mining, classification techniques, decision tree, 

classification rule, leukemia diseases, microarray data.  

I.INTRODUCTION 

ATA mining plays an important role for predicting 
diseases. Recent advances in microarray technology offer 

the ability to measure expression levels of thousands of genes 
simultaneously. Analysis of such data helps us identifying 
different clinical outcomes that are caused by expression of a 
few predictive genes. The feature extraction and classification 
are carried out with combination of the high accuracy of 
ensemble based algorithms, and comprehensibility of a single 
decision tree. These allow deriving exact rules by describing 
gene expression differences among significantly expressed 
genes in leukemia. It is evident from our results that it is 
possible to achieve better accuracy in classifying Leukemia 
without sacrificing the level of comprehensibility. Some of the 
most important and popular data mining techniques are 
association rules, classification, clustering, prediction and 
sequential patterns [1].  

Leukemia disease is a type of cancer that affects the blood 
and the bone marrow it is characterized by an abnormal 
proliferation of blood cells. Acute Myelogenous Leukemia 
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(AML), Acute Lymphoblastic Leukemia (ALL), Chronic 
Myeloid Leukemia (CML) and Chronic Lymphocytic 
Leukemia (CLL) are categorized as leukemia diseases [2]. In 
general, leukemia is grouped by how fast it gets worse and 
what kind of white blood cells it affects [3].  

Microarray is one such technology which enables the 
researchers to investigate and address issues which were once 
thought to be non-traceable by facilitating the simultaneous 
measurement of the expression levels of thousands of genes 
[4]. Microarray data sets are commonly very large, and 
analytical precision is influenced by a number of variables. So 
it is extremely useful to reduce the dataset to those genes that 
are best distinguished between the two cases or classes (e.g. 
normal vs. diseased). There are two common methods for in 
depth microarray data analysis such as clustering and 
classification [5]. Clustering is one of the unsupervised 
approaches to classify data into groups of genes or samples 
with similar patterns that are characteristic to the group. 
Classification is supervised learning and also known as class 
prediction or discriminate analysis. Generally, classification is 
a process of learning-from-examples. Given a set of pre-
classified examples, the classifier learns to assign an unseen 
test case to one of the classes. 

A DNA microarray technique allows to simultaneously 
observing the expression levels of thousands of genes during 
significant biological processes and across collections of 
related samples [6]. The rest of this paper is organized as the 
follows. In Section II, we discuss related works in this domain. 
In Section III, we explore the methodologies used in this 
work. In Section IV, we present experimental results and 
analysis. In Section V, we conclude the paper. 

II.LITERATURE REVIEW 

There are several gene selection methods for cancer 
classification using microarray datasets. However, most of 
them did not concern on identifying minimum number of 
informative genes with high classification accuracy [7]. 

Sivaraman et al. proposed a blood cancer prediagnosis 
system with the aid of Statistical Approach with Fuzzy 
Inference System and Feed Forward Back Propagation Neural 
Network. Their system was implemented on a huge set of test 
data. It was utilized to analyze of the outcomes. Thus the 
proposed Blood cancer pre diagnosis system offers a 
significant of accuracy, sensitivity and specificity. That used 
the method more precisely diagnosis the Blood cancer from 
the given test data by seeing the elevated rate of measurements 
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[8]. 
Priyanga et al. developed a system called data mining based 

cancer prediction system. The main aim of this model was to 
provide the earlier warning to the users, and it was also cost 
and time benefit to the user. It predicts three specific cancer 
risks. Specifically, cancer prediction system estimates the risk 
of the breast, skin, and lung cancers by examining a number of 
user-provided genetic and non-genetic factors. This system is 
validated by comparing its predicted results with the patient’s 
prior medical record, and also this system analyzed using 
Weka. This prediction system is available in online [9]. 

Suji et al. get the oral datasets form the various diagnostic 
centers which contained both cancer and non-cancer patients’ 
information and collected data was pre-processed for duplicate 
and missing information. Then they applied many 
classification algorithms on NMDS dataset. The performance 
of those algorithms had been analyzed. A classification rate of 
100% was obtained for C4.5 algorithm and classification rate 
of 98.7% was obtained for Random Tree Algorithm. 
Classification rate of 99.5% was obtained for MPNN [10]. 

Shajahaan et al. compared various supervised learning 
algorithms to predict the best classifier. Experimental results 
showed that the effectiveness of the proposed method. Model 
was also evaluated using precision and recall. It was found 
that among various classification techniques random tree 
outperforms of all other algorithms with highest accuracy rate. 
Therefore, an efficient classifier was identified to determine 
the nature of the disease which was highly essential in a 
clinical investigation of life threatening disease like breast 
cancer [11]. 

Dash et al. provided a comparison between dimension 
reduction technique, namely Partial Least Squares (PLS) 
method and a hybrid feature selection scheme They evaluated 
the relative performance of four different supervised 
classification procedures such as Radial Basis Function 
Network (RBFN). Experimental results showed that the Partial 
Least-Squares (PLS) regression method was an appropriate 
feature selection method and a combined use of different 
classification and feature selection approaches made it 
possible to construct high performance classification models 
for microarray data [12]. 

Chandrasekar et al. presented effective classification 
techniques. After investigation of different classification 
algorithms, they chosen 6 classifier based on simulation 
performance and they used Tree Random classifier achieved 
overall classification accuracy 98%, which was significant 
[13]. 

Pujari et al. presented an ensemble model which was 
constructed to improve classification accuracy by combining 
the prediction of multiple classifiers. The performance 
measured gain, accuracy, specificity and sensitivity which 
were analyzed to handle ionosphere data using CART, 
CHAID and QUEST classification algorithms. From the 
experimental results, they concluded that the ensemble model 
with feature selection achieved highest accuracy of 93.84% on 
test data [14]. 

III.METHODOLOGY RESEARCH 

This research uses data mining techniques for analysis and 
evaluation of classification algorithms of leukemia disease 
dataset. Through open source WEKA data mining techniques, 
we can generate predictive model for classification of 
leukemia disease, evaluate accuracies, and performance of 
several techniques.  

A.Dataset Description 
To compare these data mining classification techniques and 

comparison analysis, we need the datasets. This research 
chooses Leukemia data sets. Directly we can apply this data in 
the data mining tools (Weka) and predict the results. The 
chosen dataset "Testing data" on year 2010 contains 72 
leukemia samples (47 ALL and 25 AML). Table I shows 
leukemia data sets description. 

 
TABLE I 

LEUKEMIA DATA SETS DESCRIPTION 

Owner Classes Attribute Type 
# Attributes 

genes 
# 

Instances
BioInformatics_Seville 

[15] 
ALL 
AML 

Numeric 7129 72 

B.Classification Algorithms 

Classification divides data samples into target classes. The 
classification technique predicts the target class for each data 
points. Data classification approach is a supervised learning 
approach having known class categories [36]. Data set is 
partitioned as training and testing datasets. Using training 
dataset, we trained the classifier. Correctness of the classifier 
could be tested using test dataset. Classification is one of the 
most widely used methods of Data Mining in Healthcare 
organization [16]. However, the accuracy of such methods 
different according to the classification algorithm used. 
Identifying the best classification algorithm among all 
available is a challenging task. The present research proposes 
a comprehensive analysis of different classification 
algorithms, and performance of evaluate by applying leukemia 
micro-array data set. Hu et al. [16] used different classification 
method such as decision tree, SVM and ensemble approach 
for analyzing microarray data [16]. 

1.Utilization of Decision Tree Algorithms 
Decision tree is one of the most popular and efficient 

technique in data mining. This technique has been established 
and well explored by many researchers. However, some 
decision tree algorithms may produce a large structure of tree 
size and it is difficult to understand [21]. Furthermore, 
misclassification of data often occurs in learning process. 
Therefore, a decision tree algorithm that can produce a simple 
tree structure with high accuracy in term of classification rate 
is a need to work with huge volume of data. Pruning methods 
have been introduced to reduce the complexity of tree 
structure without decrease the accuracy of classification. 

In this research, we choose WEKA (The Waikato 
Environment for Knowledge Analysis) for running several 
algorithms in decision tree. Each algorithm was explained in 
subsections from A to K. 
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is mapped to new attributes [19].  

g) BFTree 

BFTree is a classification algorithm that builds a decision 
tree using a best-first expansion of nodes rather than the 
depth-first expansion used by standard decision tree learners 
(such as C4.5). Pre- and postpruning options are available that 
are based on finding the best number of expansions to use via 
cross-validation on the training data. While fully grown trees 
are the same for best-first and depth-first algorithms, the 
pruning mechanism used by BFTree will yield a different 
pruned tree structure than that produced by depth-first 
methods [38]. Another tree base classification algorithm is FT 
that builds a functional tree with oblique splits and linear 
functions at the leaves [22]. 

h) Decision Stumps (DS) 

Decision stumps (DS) are one level decision trees [23]. We 
can find the best stump just as we would learn a node in a 
decision tree: we search over all possible features to split on, 
and for each one, we search over all possible thresholds 
induced by sorting the observed values. In classification 
problems, each node in a decision stump represents a feature 
in an instance to be classified, and each branch represents a 
value that the node can take. Instances are classified starting at 
the root node and sorting them based on their feature values. 
In regression problems, DS (or regression stumps) do 
regression based on mean-squared error where each node in a 
decision stump represents a feature in an instance to be 
predicted, and each branch represents a value that the node can 
take. At worst a decision stump will reproduce the most 
common sense baseline, and may do better if the selected 
feature is particularly informative [24]. 

i) Logistic Model Tree  

Logistic Model Tree (LMT) [25] algorithm makes a tree 
with binary and multiclass target variables, numeric and 
missing values. So this technique uses logistic regression tree. 
LMT produces a single outcome in the form of tree containing 
binary splits on numeric attributes. 

j) NBTree 

A Naive Bayes Tree (NBTree) Classifier Although the 
attribute independence assumption of naive Bayes is always 
violated on the whole training data; it could be expected that 
the dependencies within the local training data is weaker than 
that on the whole training data. Thus, NBTree [26] builds a 
naive Bayes classifier on each leaf node of the built decision 
tree, which just integrate the advantages of the decision tree 
classifiers and the naive Bayes classifiers. Simply speaking, it 
firstly uses decision tree to segment the training data, in which 
each segment of the training data is represented by a leaf node 
of tree, and then builds a naive Bayes classifier on each 
segment. A fundamental issue in building decision trees is the 
attribute selection measure at each non-terminal node of the 
tree.  

 

k) RandomTree 

A random tree is a tree drawn at random from a set of 
possible trees. In this context “at random” means that each tree 
in the set of trees has an equal chance of being sampled. 
Another way of saying this is that the distribution of trees is 
“uniform”. Random trees can be generated efficiently and the 
combination of large sets of random trees generally leads to 
accurate models. Random tree models have been extensively 
developed in the field of Machine Learning in the recent years 
[18]. 

2.Utilization of Rule Classifier Algorithms 

Rule based classification algorithm also known as separate-
and-conquer method. This method is an iterative process 
consisting in first generating a rule that covers a subset of the 
training examples and then removing all examples covered by 
the rule from the training set. This process is repeated 
iteratively until there are no examples left to cover [27]. Rule 
discovery or rule extraction from data is data mining 
techniques aimed at understanding data structures, providing 
comprehensible description instead of only black box 
prediction.  

Classification algorithms are widely used in various 
applications. Data classification is a two steps process in 
which first step is the training phase where the classifier 
algorithm builds classifier with the training set of tuples and 
the second phase is classification phase where the model is 
used for classification and its performance is analyzed with the 
testing set of tuples [28]. There are various classification rule 
algorithms such as NNge, JRip, Ridor, DTNB, PART, OneR, 
ZeroR and so on. In this research, we have analyzed 
classification rule algorithms namely OneR, JRip, NNge, 
PART, Ridor and ZeroR.  

a) OneR 

OneR, short for “One Rule”, is a simple classification 
algorithm that generates a one-level decision tree. OneR is 
able to infer typically simple, yet accurate, classification rules 
from a set of instances. Comprehensive studies of OneR’s 
performance have shown it produces rules only slightly less 
accurate than state-of-the-art learning schemes while 
producing rules that are simple for humans to interpret. OneR 
is also able to handle missing values and numeric attributes 
showing adaptability despite simplicity. The OneR algorithm 
creates one rule for each attribute in the training data, and then 
selects the rule with the smallest error rate as its ‘one rule’. To 
create a rule for an attribute, the most frequent class for each 
attribute value must be determined. The most frequent class is 
simply the class that appears most often for that attribute 
value. A rule is simply a set of attribute values bound to their 
majority class; one such binding for each attribute value of the 
attribute the rule is based on [29]. 

b) JRip 

In 1995 JRip was implemented by Cohen, W. W, in this 
algorithm were implemented a propositional rule learner, 
Repeated Incremental Pruning to Produce Error Reduction 
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(RIPPER). By the way, Cohen implementing RIPPER [30] in 
order to increase the accuracy of rules by replacing or revising 
individual rules. Reduce Error Pruning was used where it 
isolates some data for training and decided when stop from 
adding more condition to a rule. By using the heuristic based 
on minimum description length as stopping criterion. Post-
processing steps followed in the induction rule revising the 
regulations in the estimates obtained by global pruning 
strategy and it improves the accuracy. 

c) NNge  

Nearest-neighbor-like algorithm (NNge) is a nearest 
neighbor method with generalization. Instance-based learners 
are “lazy” in the sense that they perform little work when 
learning from the data set, but expend more effort classifying 
new examples. The simplest method, nearest neighbor, 
performs no work at all when learning. NNge does not attempt 
to out-perform all other machine learning classifiers. Rather, it 
examines generalized exemplars as a method of improving the 
classification performance of instance-based learners [31]. 

d) PART 

PART algorithm [32] is a relatively simple algorithm who 
does not execute global optimization to generate accurate 
rules, but it is practiced separately and-conquer strategy, for 
example it builds a rule, removes the instances it covers, and 
continues to create a recursive rule for instances rest until 
there is no longer the instances is left. Furthermore, Eibe and 
Witten [32] said that the algorithm producing sets of rules 
called ‘decision lists’ which are ordered set of rules. A new 
data is compared to each rule in the list in turn, and the item is 
assigned the category of the first matching rule (a default is 
applied if no rule successfully matches). PART builds a partial 
C4.5 decision tree in every iterative and makes the “best” leaf 
into a rule. The algorithm is a combination of C4.5 and 
RIPPER rule learning. 

e) Ridor 

Brian R. Gaines and Paul Compton [33] has develop Ridor 
or RIpple-DOwn Rule learner. This algorithm generates 
default rule first and after that it generate the exceptions for 
default rule along with the least error rate. Then it generates 
the "best" exceptions for each exception and iterates until 
pure. Thus it performs a tree-like expansion of exceptions. The 
exceptions are a set of rules that predict classes other than the 
default. IREP is used to generate the exceptions. 

f)ZeroR  

ZeroR is the simplest classification method which depends 
on the target and ignores all predictors. ZeroR classifier 
simply predicts the majority category (class). Although there 
is no predictability power in ZeroR, it is useful for 
determining a baseline performance as a benchmark for other 
classification methods [34]. 

g)Performance Factors Evaluation 
Accuracy is the proportion of the total number of 

predictions that were correct. It is determined using: 

Accuracy 	[35] 

 
where, TP rate = positives correctly classified / total positives, 
FP rate = negatives incorrectly classified / total negatives.  

Precision is the proportion of the predicted positive cases 
that were correct, as calculated using: 
 

Precision
tp

tp fp
 

 
Recall or Sensitivity or True Positive Rate (TPR): It is 

the proportion of positive cases that were correctly identified, 
as calculated using: 
 

Recall
tp

tp fn
 

 
F-measure: The F-Measure computes some average of the 

information retrieval precision and recall metrics. 
 

F
2 ∗ Recall i, j ∗ Precision i, j
Precision i, j Recall i, j

 

 
Receiver Operating Characteristic (ROC) Curve: It is a 

graphical approach for displaying the tradeoff between true 
positive rate (TPR) and false positive rate (FPR) of a 
classifier. 

IV.EXPERIMENTAL RESULTS 

In this section, we conducted an experiment using Weka 
application. Weka is a comprehensive suite of Java class 
libraries that perform many advanced machine learning and 
data mining algorithms [25]. We analyze and compare the 
performance of decision tree algorithms namely Decicion 
Stump, FT, J48(C4.5), LADTree, REPTree, LMT, NBTree, 
CART, Random Forest and RandomTree, and compare the 
performance of Rule classifier algorithms namely JRip, NNge, 
OneR, PART, Ridor, ZeroR. 

A.Accuracy Measures 

This approach has been implemented on two different 
machines (M1 and M2) as shown in Table II. The simulation 
results are partitioned into several sub items for easier analysis 
and evaluation. Different performance matrix like accuracy, 
Time Taken to Build Model (Seconds), True Positive rate, 
False Positive rate, Precision, Recall, F Measure, and Receiver 
Operating Characteristics (ROC) Area are presented in 
numeric value during training and testing phase. The summary 
of those results by running the techniques in WEKA is 
reported in Tables III-VI. 

Figs. 2 and 3 show the comparison based about the 
accuracy by each learning algorithm. Based on Figs. 2 and 3, 
we can clearly see that the highest accuracy is 100% and the 
lowest is 65.27%. In fact, the highest accuracy belongs to the 
NNge from Rule Classifier and FT, LAD tree, LMT, NBtree, 
Random forest and random tree from tree classifier. The total 
time required to build the model is also a crucial parameter in 
comparing the classification algorithm. 
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In this simple experiment, from Tables II-V, we can say that 
a Zero R from rule classifier requires the shortest time which 
is around 0 seconds consecutive with compared to random tree 
from tree classifier which requires the longest model building 
time which is around 0.02 seconds. as shown in Figs. 7 and 8. 

B.Response Time 

The total time required to build the model is also a crucial 
parameter in comparing the classification algorithm. In Tables 

VII-X, we have summarized two main measures of evaluation 
for each algorithm such as time taken to build the model and 
accuracy. 

 
TABLE II 

DESCRIPTION OF MACHINES 

Machine Name Specification 

M1 Intel Core 2 Due 2.13 GHz Processor 4 GB RAM 

M2 Intel 3.00 GHz Processor 2 GB RAM 

 
TABLE III 

ACCURACY MEASURE FOR CLASSIFICATION RULE ALGORITHMS (M1) 

Accuracy %ROC Area F-MeasureRecall Precision FP RateTP Rate 
Time Taken to Build 

Model (Seconds) 
Methods 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 1.09 JRIP 

100 1 1 1 1 0 1 1.39 NNge 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 0.28 One R 

98.61 0.98 0.986 0.986 0.986 0.026 0.986 0.68 PART 

94.44 0.929 0.944 0.944 0.945 0.086 0.944 0.55 Ridor 

65.27 0.5 0.516 0.653 0.426 0.653 0.653 0 Zero R 

 
TABLE IV 

ACCURACY MEASURE FOR CLASSIFICATION TREE ALGORITHMS (M1) 

Accuracy %ROC Area F-MeasureRecallPrecisionFP RateTP Rate
Time Taken to Build  

Model (Seconds) 
Methods 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 4.87 BF Tree 

94.44 0.957 0.945 0.944 0.952 0.03 0.944 0.26 Decision Stump 

100 1 1 1 1 0 1 3.75 FT 

98.61 0.98 0.986 0.986 0.986 0.026 0.986 0.56 J48(C4.5) 

100 1 1 1 1 0 1 9.52 LADTree 

93.05 0.947 0.932 0.931 0.942 0.037 0.931 0.3 REP Tree 

100 1 1 1 1 0 1 5.25 LMT 

100 1 1 1 1 0 1 3.62 NBTree 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 4.48 CART 

100 1 1 1 1 0 1 0.91 Random Forest 

100 1 1 1 1 0 1 0.02 Random Tree 

 
TABLE V 

ACCURACY MEASURE FOR CLASSIFICATION RULE ALGORITHMS (M2) 

Accuracy % ROC Area F-MeasureRecallPrecisionFP RateTP Rate
Time Taken to Build  

Model (Seconds) 
Methods 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 2.17 JRIP 

100 1 1 1 1 0 1 2.59 NNge 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 0.36 One R 

98.61 0.98 0.986 0.986 0.986 0.026 0.986 1.49 PART 

94.44 0.929 0.944 0.944 0.945 0.086 0.944 1.8 Ridor 

65.27 0.5 0.516 0.653 0.426 0.653 0.653 0 Zero R 

 
TABLE VI 

ACCURACY MEASURE FOR CLASSIFICATION TREE ALGORITHMS (M2) 

Accuracy %ROC Area F-Measure Recall PrecisionFP Rate TP Rate 
Time Taken to Build  

Model (Seconds) 
Methods 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 8.38 BF Tree 

94.44 0.957 0.945 0.944 0.952 0.03 0.944 0.59 Decision Stump 

100 1 1 1 1 0 1 7.17 FT 

98.61 0.98 0.986 0.986 0.986 0.026 0.986 1.45 J48(C4.5) 

100 1 1 1 1 0 1 10.92 LADTree 

93.05 0.947 0.932 0.931 0.942 0.037 0.931 0.41 REP Tree 

100 1 1 1 1 0 1 11.03 LMT 

100 1 1 1 1 0 1 4.59 NBTree 

95.83 0.959 0.959 0.958 0.959 0.041 0.958 8.98 CART 

100 1 1 1 1 0 1 0.33 Random Forest 

100 1 1 1 1 0 1 0.02 Random Tree 
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Fig. 11 Accuracy, T1 and T2 of Tree Classifiers 

V.CONCLUSION 

In this work, focuses on finding the right algorithm for 
classification of data that works better on diverse data sets, we 
have met our objective which is used to evaluate and 
investigate seventeen selected classification algorithms based 
on Weka tool to predict of best model of leukemia diseases. 
The best algorithm based on the Leukemia data is Random 
Tree classifier with an accuracy of 100% and the total time 
taken to build the model is at 0.02 seconds. These results 
suggest that among the machine learning algorithm tested 
because it has the potential to significantly improve the 
conventional classification methods to be used in medical field 
or in general, bioinformatics field. 
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