
International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:10, No:4, 2016

467

Probabilistic Simulation of Triaxial Undrained
Cyclic Behavior of Soils

Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan

Abstract—In this paper, a probabilistic framework based on
Fokker-Planck-Kolmogorov (FPK) approach has been applied to
simulate triaxial cyclic constitutive behavior of uncertain soils. The
framework builds upon previous work of the writers, and it has
been extended for cyclic probabilistic simulation of triaxial undrained
behavior of soils. von Mises elastic-perfectly plastic material model is
considered. It is shown that by using probabilistic framework, some of
the most important aspects of soil behavior under cyclic loading can
be captured even with a simple elastic-perfectly plastic constitutive
model.

Keywords—Elasto-plasticity, uncertainty, soils, Fokker-Planck
equation, Fourier Spectral method, Finite Difference method.

I. INTRODUCTION

THE cyclic behavior of soils plays an important role in

various engineering problems. For instance, in the field of

geotechnical earthquake engineering, evaluation of the seismic

ground motion, liquefaction potential, etc., can be strongly

influenced by the cyclic behavior of soils. Therefore, in recent

years, the response of soils to cyclic loading has received

considerable attention in geotechnical earthquake engineering.

Researchers have developed different advanced

deterministic constitutive models within the framework

of Critical State Soil Mechanics (CSSM) in order to simulate

complex soil behavior more realistically [1]. One of these

models is the Dafalias-Manzari model (DM04) which is

capable of predicting monotonic undrained and drained

behavior of soils [2]. However, DM04 model is unable to

capture some of the aspects of soil behavior under undrained

cyclic loading (e.g., effective stress reduction and modulus

degradation) [3].

In order to overcome the shortcomings of DM04, Boulanger

and Ziotopulou proposed a Plasticity Model for Sand

(PM4Sand) based on the DM04 which is capable of predicting

soil behavior under cyclic loading. However, this model uses

22 different parameters to simulate constitutive soil behavior of

soils [4]. Since in geotechnical engineering practice, advanced

laboratory tests are rarely performed, it is important to find

other models to simulate cyclic constitutive behavior of soils

using less number of parameters.

In order to simulate soil behavior more realistically,

considering the inherent uncertainties in soil properties
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is necessary. These uncertainties are due to the inherent

variability of soil deposits [5], [6], measurement uncertainties

[7]–[10], and transformation relation uncertainties [11]. In

order to take these uncertainties into account, probabilistic

techniques are required. However, existing probabilistic

models, such as Monte Carlo Simulation (MCS) technique

[12]–[16] and perturbation method [17] have limitations

in modeling of nonlinear problems. MCS technique is

computationally very expensive for a nonlinear problem with

multiple uncertain material properties. On the other hand,

perturbation technique is limited to problems with small

coefficient of variations (COVs) (less than 20%) [18]. Given

that, for some soil properties COV is greater than 70%,

perturbation techniques cannot be applied. To overcome these

drawbacks, Sett, Unutmaz et al. [19], [20] developed a

probabilistic model based on FPK approach [21] to simulate

one-dimensional cyclic behavior of soils probabilistically.

They observed that by taking soil uncertainties into account,

even with a simple von Mises elastic-perfectly plastic model,

which requires only two soil parameters (elastic shear modulus

(G) and undrained shear strength (su)), a realistic cyclic

material behavior can be obtained. However, the developed

FPK based probabilistic framework for cyclic constitutive

modeling of soils is a one-dimensional framework which

cannot be used for simulation of real world problems.

Therefore, the first aim of this study is to extend the

one-dimensional FPK based framework for constitutive

modeling of soils to a multi-dimensional FPK framework.

Moreover, the existing one-dimensional FPK based framework

utilizes the Finite Difference (FD) technique for solving the

governing FPK equation which is not computationally efficient

for a multi-dimensional problem. Thus, the second goal of this

study is to develop a computationally efficient algorithm for

solving the governing multivariate FPK equation.

II. MATHEMATICAL FORMS OF THE GOVERNING FPK

EQUATIONS

The general constitutive rate equation for an uncertain,

elastic- perfectly plastic material can be written in the

probability density space as [19], [22]–[25]:

∂P (σ, t)

∂t
= − ∂

∂σmn

[
Nσeq

(1)mn
(σ; t) P (σ, t)

]
+

∂2

∂σmn∂σab

[
Nσeq

(2)mnab
(σ; t) P (σ, t)

]
(1)

where σ is the stress tensor, {σ11, σ22, σ33, σ12, σ23, σ31},

P is the joint probability density of the components of the

stress tensor, t is the pseudo time of the constitutive rate
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equation, Nσeq

(1)mn
and Nσeq

(2)mnab
are the equivalent advection

and diffusion coefficients, respectively, of the stress FPK PDE.

Note that the indices, m, n, a, and b vary from 1 to 3.

The mathematical forms of the equivalent advection and

diffusion coefficients of the FKP PDEs, Nσeq

(1)mn
, and Nσeq

(2)mnab
,

for a constitutive model based on the classical plasticity theory,

may be expressed as:

Nσeq

(1)mn
(σ; t) = Pr [F < 0] (σ)Nσel

(1)mn

+ {1− Pr [F < 0] (σ)}Nσpl

(1)mn
(σ, ; t)

(2)

Nσeq

(2)mnab
(σ; t) = Pr [F < 0] (σ)Nσel

(2)mnab
(t)

+ {1− Pr [F < 0] (σ)}Nσpl

(2)mnab
(σ; t)

(3)

where F is the yield function which is a function of σ,

Pr [F < 0] is the probability that material is elastic (stresses

are inside the yield surface), 1−Pr [F < 0] is the probability

that material is plastic (stresses are on the yield surface),

Nσel

(1)mn
and Nσel

(2)mnab
are the elastic advection and diffusion

coefficients, Nσpl

(1)mn
and Nσpl

(2)mnab
are the plastic advection

and diffusion coefficients. The elastic and plastic advection

and diffusion coefficients may be mathematically expressed

as:

Nσel

(1)mn
=

〈
Del

mnrsε̇rs
〉

(4)

Nσel

(2)mnab
(t) = t Cov

[
Del

mnrsε̇rs;D
el
abcdε̇cd

]
(5)

Nσpl

(1)mn
(σ; t) =

〈
Dpl

mnrs(σ; t)ε̇rs
〉
+∫ t

0
dτCov0

[
∂

∂σab

{
Dpl

mnrs(σ; t)ε̇rs
}
;

Dpl
abcd(σ; t− τ)ε̇cd

]
(6)

Nσpl

(2)mnab
(σ; t) =∫ t

0

dτCov0

[
Dpl

mnrs(σ; t)ε̇rs;D
pl
abcd(σ; t− τ)ε̇cd

]
(7)

where Del
mnrs is the elastic modulus, Dpl

mnrs is the plastic

modulus, and ε̇rs is the rate of strain. In the above equations,

〈·〉 denotes expectation operation, Cov [·] denotes covariance

operation, Cov0 [·] denotes time-ordered covariance operation,

and τ is the lag (pseudo) time. The elastic and plastic moduli,

Del
ijkl and Dpl

ijkl, assuming material isotropy, may be expressed

as [26]:

Del
ijkl =

E

2(1 + ν)

[
2ν

1− 2ν
δijδkl + δikδjl + δilδjk

]
(8)

Dpl
ijkl(σ; t) = Del

ijkl −
∂F

∂σot
Del

ijotD
el
pqkl

∂U

∂σpq

∂U

∂σab
Del

abcd

∂F

∂σcd

(9)

where E is the Young’s modulus, ν is the Poisson’s ratio, F
is the yield function, U is the plastic potential function, and

δij is the Kronecker delta.

A. Initial and Boundary Conditions

Initial conditions for the governing FPK equation (1) could

be deterministic or probabilistic. In this study, a deterministic

initial condition which can be mathematically represented by a

(multidimensional) Dirac delta function is assumed. Regarding

the boundary conditions, a reflecting boundary condition is

considered. Mathematically, this boundary condition can be

achieved by considering zero probability current, ζ, at any

point. Therefore, the boundary conditions of (1) can be written

as:

ζmn(σ, t)|at boundaries =
{
Nσeq

(1)mn
(σ; t) P (σ, t)−

∂

∂σab

[
Nσeq

(2)mnab
(σ; t) P (σ, t)

]}∣∣∣∣
at boundaries

= 0 (10)

In the following the above general forms of the FPK

equation will be specialized for simulating the unconsolidated

undrained cyclic triaxial compression Test in geotechnical

engineering. Note that the von Mises elastic-perfectly plastic

model is considered.

III. UNCONSOLIDATED UNDRAINED TRIAXIAL

COMPRESSION TEST

Triaxial compression test is a standard test in geotechnical

engineering [27]. In this test, first, an isotropic compression is

applied on a cylindrical soil specimen and then the specimen

is sheared by gradually increasing the axial strain, ε1, while

the confining pressure σ3 is remained constant (σ2 = σ3).

Triaxial compression test can be performed under drained and

undrained conditions. Under the drained condition, water is

allowed to drain and the excess pore water pressure dissipates.

On the other hand, under the undrained condition, water is not

allowed to escape the pores which results in an increase in the

pore water pressure. However, the change in the volumetric

strain, dε1 + dε2 + dε3, is zero during shearing.

In this study, an unconsolidated undrained triaxial

compression test is simulated. By assuming a von Mises

elastic-perfectly plastic model, the FPK equation may be

written in the principal stress space as:

∂P (σ, t)

∂t
= − ∂

∂σr

[
NσeqvM

(1)r
(σ)P (σ, t)

]
]

+
∂2

∂σr∂σs

[
NσeqvM

(2)rs
(σ, t)P (σ, t)

]
(11)

where σ = {σ1, σ2, σ3} and the indices, r and s, vary from 1

to 3. Note that for the triaxial text, σ2 = σ3. Therefore, (11)

simplifies to a bivariate equation:
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∂P (σ, t)

∂t
= −P (σ, t)

∂NσeqvM

(1)1
(σ)

∂σ1
−NσeqvM

(1)1
(σ)

∂P (σ, t)

∂σ1

− P (σ, t)
∂NσeqvM

(1)2
(σ)

∂σ2
−NσeqvM

(1)2
(σ)

∂P (σ, t)

∂σ2

+ NσeqvM

(2)11
(σ, t)

∂2P (σ, t)

∂σ2
1

+ P (σ, t)
∂2NσeqvM

(2)11
(σ, t)

∂σ2
1

+ 2
∂NσeqvM

(2)11
(σ, t)

∂σ1

∂P (σ, t)

∂σ1
+NσeqvM

(2)22
(σ, t)

∂2P (σ, t)

∂σ2
2

+ P (σ, t)
∂2NσeqvM

(2)22
(σ, t)

∂σ2
2

+ 2
∂NσeqvM

(2)22
(σ, t)

∂σ2

∂P (σ, t)

∂σ2

+ 2NσeqvM

(2)12
(σ, t)

∂2P (σ, t)

∂σ1∂σ2
+ 2

∂NσeqvM

(2)12
(σ, t)

∂σ1

∂P (σ, t)

∂σ2

+ 2
∂NσeqvM

(2)12
(σ, t)

∂σ2

∂P (σ, t)

∂σ1
+ 2P (σ, t)

∂2NσeqvM

(2)12
(σ, t)

∂σ1∂σ2

(12)

where σ = {σ1, σ2}. By specializing (2) and (3) to the 2D

principal space and applying the no volume change constraint,

the elastic coefficients take the following forms:

Nσel

(1)1
=

〈
E

1 + ν

〉
ε̇1

Nσel

(1)2
= −1

2

〈
E

1 + ν

〉
ε̇1

Nσel

(2)11
= t V ar

[
E

1 + ν

]
ε̇21 (13)

Nσel

(2)22
= t

1

4
V ar

[
E

1 + ν

]
ε̇21

Nσel

(2)12
= t Cov

[
E

1 + ν
;−1

2

E

1 + ν

]
ε̇21

For a von Mises elastic-perfectly plastic soil with a yield

criteria, F=
√
3J2−σy = 0, where

√
J2 is the second invariant

of the stress tensor, the equivalent advection and diffusion

coefficients can be obtained as:

NσeqvM

(1)1
(σ) = Pr[F < 0](σ)Nσel

(1)1

+ {1− Pr[F < 0]} (σ)NσplvM

(1)1
(σ, t)

=
{
1− Pr[σy ≤

√
3J2]

}
Nσel

(1)1

NσeqvM

(1)2
(σ) = Pr[F < 0](σ)Nσel

(1)2

+ {1− Pr[F < 0]} (σ)NσplvM

(1)2
(σ, t)

=
{
1− Pr[σy ≤

√
3J2]

}
Nσel

(1)2
(14)

Note that the for a elastic-perfectly plastic model, the plastic

coefficients are zero.

NσeqvM

(2)11
(σ, t) = Pr[F < 0](σ)Nσel

(2)11
(t)

+ {1− Pr[F < 0]} (σ)NσplvM

(2)11
(σ, t)

=
{
1− Pr[σy ≤

√
3J2]

}
Nσel

(2)11
(t)

NσeqvM

(2)22
(σ, t) = Pr[F < 0](σ)Nσel

(2)22
(t)

+ {1− Pr[F < 0]} (σ)NσplvM

(2)22
(σ, t)

=
{
1− Pr[σy ≤

√
3J2]

}
Nσel

(2)22
(t)

NσeqvM

(2)12
(σ, t) = Pr[F < 0](σ)Nσel

(2)12
(t)

+ {1− Pr[F < 0]} (σ)NσplvM

(2)12
(σ, t)

=
{
1− Pr[σy ≤

√
3J2]

}
Nσel

(2)12
(t) (15)

IV. SOLUTION ALGORITHMS

In this section, Fourier spectral approach is utilized for

solving the multivariate form of the obtained FPK PDE. To use

the Fourier spectral approach, the change of variable theorem

is used to write (12) in terms of σ̄ which varies from 0 to 2π:

∂P (σ̄, t)

∂t
= −P (σ̄, t)

∂NσeqvM

(1)1
(σ)

∂σ̄1
−

NσeqvM

(1)1
(σ)

2π

b1 − a1

∂P (σ̄, t)

∂σ1
− P (σ̄, t)

∂NσeqvM

(1)2
(σ)

∂σ2
−

NσeqvM

(1)2
(σ)

2π

b2 − a2

∂P (σ̄, t)

∂σ̄2
+

NσeqvM

(2)11
(σ, t)

(
2π

b1 − a1

)2
∂2P (σ̄, t)

∂σ̄2
1

+

P (σ̄, t)
∂2NσeqvM

(2)11
(σ, t)

∂σ2
1

+

2
∂NσeqvM

(2)11
(σ, t)

∂σ1

2π

b1 − a1

∂P (σ̄, t)

∂σ̄1
+

NσeqvM

(2)22
(σ, t)

(
2π

b2 − a2

)2
∂2P (σ̄, t)

∂σ̄2
2

+

P (σ̄, t)
∂2NσeqvM

(2)22
(σ, t)

∂σ2
2

+

2
∂NσeqvM

(2)22
(σ, t)

∂σ2

2π

b2 − a2

∂P (σ̄, t)

∂σ̄2
+

2NσeqvM

(2)12
(σ, t)

2π

b1 − a1

2π

b2 − a2

∂2P (σ̄, t)

∂σ̄1∂σ̄2
+

2
∂NσeqvM

(2)12
(σ, t)

∂σ1

2π

b2 − a2

∂P (σ̄, t)

∂σ̄2
+

2
∂NσeqvM

(2)12
(σ, t)

∂σ2

2π

b1 − a1

∂P (σ̄, t)

∂σ̄1
+

2P (σ̄, t)
∂2NσeqvM

(2)12
(σ, t)

∂σ1∂σ2
(16)
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Using Fourier spectral approach, solution of (16) can be

written in the following form:

P (σ̄1, σ̄2, t) =

N
2∑

n=−N
2

M
2∑

m=−M
2

αmn(t)e
i(nσ̄1+mσ̄2) (17)

where i =
√−1, and αmn(t) is the unknown time-dependent

coefficients. By substituting (17) into (16), a system of

ordinary differential equations may be obtained:

N
2∑

n=−N
2

M
2∑

m=−M
2

[
α′
mn(t) + 〈λ〉 ε̇1

{
1− Pr

[
σy ≤

√
3J2

]}
(

2π

b1 − a1

)
in αmn(t) +

〈λ〉 ε̇1 ∂

∂σ1

{
1− Pr

[
σy ≤

√
3J2

]}
αmn(t) +

〈
−1

2
λ

〉

ε̇1

{
1− Pr

[
σy ≤

√
3J2

]}(
2π

b2 − a2

)
im αmn(t) +〈

−1

2
λ

〉
ε̇1

∂

∂σ2

{
1− Pr

[
σy ≤

√
3J2

]}
αmn(t)−

t αmn(t)
{
V ar [λ] ε̇21

{
1− Pr

[
σy ≤

√
3J2

]}
(

2π

b1 − a1

)2

n2 + 2

(
2π

b1 − a1

)
V ar [λ] ε̇21

∂

∂σ1

{
1− Pr

[
σy ≤

√
3J2

]}
in + V ar [λ] ε̇21 +

∂2

∂σ2
1

{
1− Pr

[
σy ≤

√
3J2

]}
V ar

[
−1

2
λ

]
ε̇21

{
1− Pr

[
σy ≤

√
3J2

]}(
2π

b2 − a2

)2

m2 +

2

(
2π

b2 − a2

)
V ar

[
−1

2
λ

]
ε̇21

∂

∂σ2{
1− Pr

[
σy ≤

√
3J2

]}
im + V ar

[
−1

2
λ

]
ε̇21 +

∂2

∂σ2
2

{
1− Pr

[
σy ≤

√
3J2

]}
2Cov

[
λ;−1

2
λ

]
ε̇21{

1− Pr
[
σy ≤

√
3J2

]}(
2π

b1 − a1

)(
2π

b2 − a2

)
nm

+2

(
2π

b2 − a2

)
Cov

[
λ;−1

2
λ

]
ε̇21

∂

∂σ1

{
1− Pr

[
σy ≤

√
3J2

]}
im+ 2

(
2π

b1 − a1

)

Cov

[
λ;−1

2
λ

]
ε̇21

∂

∂σ2

{
1− Pr

[
σy ≤

√
3J2

]}
in+

2Cov

[
λ;−1

2
λ

]
ε̇21

∂2

∂σ1∂σ2

{
1− Pr

[
σy ≤

√
3J2

]}}]
ei(nσ̄1+mσ̄2) = 0

(18)

where λ = E/(1 + ν). Note that in the above equation,

the coefficients, Nσel

(1)1
, Nσel

(1)2
, Nσel

(2)11
, Nσel

(2)22
, and Nσel

(2)12
, are

substituted by their definitions (refer to (13), (14) and (15)).

Finally, employing the Euler method, (18) may be solved

for the unknown coefficients, αmn, at t = tj+1 given the

coefficients at t = tj :

αmn(tj+1) = αmn(tj)−Δt[
〈λ〉 ε̇1

{
1− Pr

[
σy ≤

√
3J2

]}(
2π

b1 − a1

)
in

+αmn(tj) 〈λ〉 ε̇1 ∂

∂σ1

{
1− Pr

[
σy ≤

√
3J2

]}
αmn(tj)

+

〈
−1

2
λ

〉
ε̇1

{
1− Pr

[
σy ≤

√
3J2

]}(
2π

b2 − a2

)

im αmn(tj) +

〈
−1

2
λ

〉
ε̇1

∂

∂σ2

{
1− Pr

[
σy ≤

√
3J2

]}
αmn(tj)− tj+1 αmn(tj)

{
V ar [λ] ε̇21{

1− Pr
[
σy ≤

√
3J2

]}(
2π

b1 − a1

)2

n2 +

2

(
2π

b1 − a1

)
V ar [λ] ε̇21

∂

∂σ1

{
1− Pr

[
σy ≤

√
3J2

]}

in+ V ar [λ] ε̇21
∂2

∂σ2
1

{
1− Pr

[
σy ≤

√
3J2

]}
+

V ar

[
−1

2
λ

]
ε̇21

{
1− Pr

[
σy ≤

√
3J2

]}(
2π

b2 − a2

)2

m2 + 2

(
2π

b2 − a2

)
V ar

[
−1

2
λ

]
ε̇21

∂

∂σ2{
1− Pr

[
σy ≤

√
3J2

]}
im +

V ar

[
−1

2
λ

]
ε̇21

∂2

∂σ2
2

{
1− Pr

[
σy ≤

√
3J2

]}
+

2Cov

[
λ;−1

2
λ

]
ε̇21

{
1− Pr

[
σy ≤

√
3J2

]}(
2π

b1 − a1

)
(

2π

b2 − a2

)
nm+ 2

(
2π

b2 − a2

)
Cov

[
λ;−1

2
λ

]
ε̇21

∂

∂σ1

{
1− Pr

[
σy ≤

√
3J2

]}
im+ 2

(
2π

b1 − a1

)

Cov

[
λ;−1

2
λ

]
ε̇21

∂

∂σ2

{
1− Pr

[
σy ≤

√
3J2

]}
in+

2Cov

[
λ;−1

2
λ

]
ε̇21

∂2

∂σ1∂σ2

{
1− Pr

[
σy ≤

√
3J2

]}}]
(19)

Note that at t = t0, the coefficients, αmn(t0) may be obtained

from the initial condition, P (σ̄l1 , σ̄l2 , t0) as:

N
2∑

n=−N
2

M
2∑

m=−M
2

αmn(t0)e
i(nσ̄l1

+mσ̄l2
) = P (σ̄l1 , σ̄l2 , t0)

or, αmn(t0) =

1

N + 1

1

M + 1

N∑
l1=0

M∑
l2=0

P (σ̄l1 , σ̄l2 , t0) e
−i(nσ̄l1

+mσ̄l2
) (20)

where σ̄l1 = 2π
N l1, σ̄l2 = 2π

M l2, and l1 = 0, 1, 2, · · · , N ,

and l2 = 0, 1, 2, · · · ,M . Equation (19) may then be used to
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increment the solution forward in time.

V. RESULTS AND DISCUSSION

The above presented algorithm for solving the FPK PDE is

implemented using the programming language C++. The codes

are publicly available through the corresponding author’s

website. Simulation results are presented in this section in

terms of probabilistic constitutive responses of von Mises

elastic-perfectly plastic soils under unconsolidated undrained

cyclic triaxial compression test.

To model cyclic behavior of soils, one hysteresis loop which

consists of three branches (loading, unloading and reloading)

is simulated. The loading branch is similar to the monotonic

simulation and can be found up to 1% strain by solving

(12). Note that, in the cyclic simulation, Pr
[
σy ≤ √

3J2
]

in

(19) should be replaced by Pr
[
σ2
y ≤ 3J2

]
. In this simulation,

σy is considered to be a Weibull random variable and

correspondingly the J2-dependent probabilities appearing in

(19) were computed as:

Pr
[
σ2
y ≤ 3J2

]
= CDF [Weibull Distribution [θ, κ] , 3J2]

=

⎧⎪⎨
⎪⎩ 1− e

−
⎛
⎝3J2

θ

⎞
⎠
κ

when (σ1 − σ2) ≥ 0
0 when (σ1 − σ2) < 0

(21)

Note that, 3J2 = (σ1 − σ2)
2, θ and κ are the parameters of

the Weibull distribution. They were obtained from the mean

and variance of yield stress using the following relationships

[28]:

θΓ

(
1 +

1

κ

)
= 〈σy〉 θ2

[
Γ

(
1 +

2

κ

)
−

{
Γ

(
1 +

1

κ

)}2
]

= Var [σy] (22)

where Γ(·) denotes the gamma function.

Similarly, the unloading branch can be obtained up to −1%

strain by solving (12); however, in computing NσeqvM

(1)r
(σ)

and NσeqvM

(2)r
, ε̇1 should be replaced by −ε̇1. Moreover, the

J2-dependent probabilities appearing in (19) were computed

as:

Pr
[
σ2
y ≤ 3J2

]
= CDF [Weibull Distribution [θ, κ] , 3J2]

=

⎧⎪⎨
⎪⎩ 1− e

−
⎛
⎝3J2

θ

⎞
⎠
κ

when (−σ1 + σ2) ≥ 0
0 when (−σ1 + σ2) < 0

(23)

Finally, the reloading branch is obtained up to 1% strain

by solving (12) with the same coefficients as the loading

simulation. It should be mentioned that the initial condition

of the unloading branch is the solution of the loading branch

at the 1% strain, and the initial condition of the reloading

branch is the solution of unloading branch at −1% strain.

In this simulation, the Young’s modulus, E, of the soil is

assumed to be a normal random variable with a mean value

of 100 MPa and a coefficient of variation (COV ) of 20%. On

the other hand, the yield stress, σy , is assumed to be a Weibull

random variable with a mean value of 150 kPa and a COV of

50%.

The simulation result is obtained in terms of the

evolutionary joint PDF of the axial and radial stresses. The

marginal PDFs of the axial and radial stresses can be computed

by using the standard integration techniques. Note that all

the results presented below are processed through a Kaiser

window to minimize spurious oscillations in the solutions.

Figs. 1 and 2 show the evolutionary marginal PDFs of the

axial and radial stresses, which include all the information on

the statistical moments of the stresses, such as the evolutionary

mean and standard deviation, at the end of loading, unloading

and reloading.

End of Loading
End of Unloading

End of Reloading

� 2 �1 0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

Axial Stress �MPa�

PD
F

Fig. 1 Probability density function (PDF) of the axial stress for an uncertain
von Mises cyclic elastic–perfectly plastic soil under an unconfined

compression test

End of Loading
End of Unloading
End of Reloading

� 2 �1 0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

Radial Stress �MPa�

PD
F

Fig. 2 Simulated probabilistic cyclic elastic–perfectly plastic behavior in
terms of the evolutionary mean of deviatoric stress with axial strain

Typical cyclic undrained responses are also obtained in

terms of the evolutionary mean and standard deviation of

deviatoric stress, q = σ1 − σ2, with axial strain (εa), and

deviatoric stress (q) with mean effective stress, p′ = 1
3 (σ1 +

2σ2), by post–processing the evolutionary joint PDF of the

stresses (Figs. 3-5) [2].

As can be seen in Fig. 3, the mean stress is nonlinear

even at very small strain. This is due to the uncertainty

in the yield strength which means that there is always a

chance that soil plastifies at a very small strain. Moreover,
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Fig. 3 Effect of the number of Fourier terms on the simulated evolutionary
mean and standard deviation behaviors of the axial stress with the axial
strain for an uncertain von Mises elastic-perfectly plastic soil under an

unconfined compression test

it is possible that soil remains elastic at strains past the

yield point. Therefore, the mean solution can be explained

as the ensemble average of all the possibilities. This agrees

well with the soil behavior that is usually observed in

any laboratory experiment. In general, within a laboratory

specimen (considered as representative volume element [29])

each particle contacts has different yield strength and the

observed soil behavior in the experiment is the ensemble

average (mean) behavior of all the particle contacts. This figure

also shows that by considering the uncertainties in material

properties, the hardening and Bauschinger effect can also

be captured even with a simple von Mises elastic–perfectly

plastic (two–parameters) model. On the other hand, Fig. 4

shows the evolutionary standard deviation behavior obtained

by post–processing the evolutionary PDF of the stress. It

is important to note that the standard deviation behavior

depends on the soil parameters, and by using a different

values of COV for elastic modulus (E) or yield strength

(σy), a totally different behavior may be observed. In general,

when the material is elastic, both the uncertainties in elastic

modulus (E) and yield strength (σy) are governing. However,

as soil becomes elastic–plastic, the influence of uncertainty in

elastic modulus (E) decreases, and the uncertainty in yield

strength is governing. This figure also shows that the standard

deviation always increases. This indicates that as material

plastifies, the two–parameter von Mises elastic–perfectly

plastic becomes less and less accurate. Therefore, in order

to get more accurate results, more advanced constitutive

(isotropic/kinematic hardening) models are required. Note that

this behavior is not generic, and it depends on the material

parameters. The evolutionary effective stress path is also

shown in Fig. 5.

Note that the evolutionary statistics were computed by

integrating the solutions – probability density function and

joint probability density function – after each (pseudo) time

step using standard techniques. It also should be mentioned

that the presented solutions were obtained using sixty Fourier

terms in each direction. In this context, it is important to

emphasize that, the presented hybrid spectral-finite difference
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Fig. 4 Simulated probabilistic cyclic elastic–perfectly plastic behavior in
terms of the evolutionary standard deviation of deviatoric stress with axial

strain

� 0.02 � 0.01 0.00 0.01 0.02 0.03 0.04
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Fig. 5 Simulated probabilistic cyclic elastic–perfectly plastic behavior in
terms of the evolutionary mean of deviatoric stress with evolutionary mean

effective stress

algorithm is conditionally stable – the product of the number

of Fourier terms and (pseudo) time step-size (Δt) should be

less than 2. Based on the simulations performed in this study,

a value between 0.2 and 2 is recommended for optimum

efficiency and stability.

VI. CONCLUSION

In this study the existing one dimensional FPK framework

for probabilistic cyclic constitutive modeling of soils was

extended to multi-dimension. The developed algorithms

were then used to probabilistically simulate the multiaxial

cyclic constitutive behaviors of uncertain elasto-plastic

soils. In particular, the unconsolidated undrained triaxial

compression test (common laboratory constitutive experiments

in geotechnical engineering) was considered.

The elastic-perfectly plastic cyclic unconsolidated undrained

triaxial compression simulation results indicated that, even

with the elastic-perfectly plastic (i.e, bilinear) model, due to

uncertainty in yielding, the probabilistic response was smooth

and nonlinear from the beginning. This response is very

realistic and it means that depending upon the uncertainty

in yield strength, there is always a possibility that the soil
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becomes elastic-plastic from the very beginning of loading,

which agrees well with the fact that within a representative

volume element of a spatially non-uniform material like soils

some particle-to-particle slips may occur earlier than others.

It was also shown that explicit treatment of soil uncertainties

not only allows for quantification of our confidence in our

predictions, but also modeling some of the important aspects of

soil behaviors-for example, hardening and Bauschinger effect-

even with the simplest elastic-perfectly plastic von Mises

(two-parameters) model. This is particularly significant since

in geotechnical engineering practice, advanced laboratory tests

are rarely performed.
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uncertainty and its influence on simulated G/Gmax and damping
behavior,” Journal of Geotechnical and Geoenvironmental Engineering,
vol. 137, no. 3, pp. 197–204, March 2011.

[21] M. L. Kavvas, “Applied Stochastic Methods in Engineering (ECI 266)
classnotes,” Lecture Notes, University of California, Davis, 1993.

[22] B. Jeremić, K. Sett, and M. L. Kavvas, “Probabilistic elasto-plasticity:
Formulation in 1–D,” Acta Geotechnica, vol. 2, no. 3, pp. 197–210,
September 2007.
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