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Abstract—In this paper numerous robust fitting procedures are
considered in estimating spatial variograms. In spatial statistics, the
conventional variogram fitting procedure (non-linear weighted least
squares) suffers from the same outlier problem that has plagued this
method from its inception. Even a 3-parameter model, like the
variogram, can be adversely affected by a single outlier. This paper
uses the Hogg-Type adaptive procedures to select an optimal score
function for a rank-based estimator for these non-linear models.
Numeric examples and simulation studies will demonstrate the
robustness, utility, efficiency, and validity of these estimates.

Keywords—Asymptotic relative efficiency, non-linear rank-
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I. INTRODUCTION

N geostatistics, a function of the distances and directions

separating the sample locations, used to model statistical
dependence, is estimated by the variogram. The variogram is
then used to build a spatial model that eventually determines
the kriging weights and the standard errors of an estimate at a
known spatial location with an unknown response.

The theoretical variogram 7(h) is often a non-linear

function describing the spatial correlation structure of a
random field or stochastic process Z (h) There are two

stages in creating a variogram. First, the individual variogram
points must be determined using the raw data (the estimation

step). This is a plot of }7(h) versus the separation distance h

of all pairwise locations, which is often Euclidean. Second,
using these variogram points, the parameters associated with
the variogram function must be estimated (the fitting step).
Geostatistical data often contains outliers. Reference [9]
discussed some geostatistical data with 10-15% outliers while
[13] showed that this proportion can be as high as 30%.

There are several competing procedures for the estimation
step. The original, using the method-of-moments was
proposed by [20]:

! Z(Z (si)—Z(sj))z, 5,8, €R’ 1)

|N (h)| N(h)

7(h)=
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where N (h)s{(si,sj):si -s, =h;i, ] :1,...,n} and |N (h)| is
the number of distinct pairs in N (h ) .
A robust estimator, proposed by [6] is:

;} /[0.457+ 0.494 J )
N (h)

For the fitting step, we can specify a parametric variogram
model, for example, an exponential (3) (there are many more),

where 0 :(r, 0'2,¢)'

(nugget, sill, and range) respectively.

”“>={Nih)§)z (s)-2(s))

denotes the vector of parameters

if h=0

0
7(h;0)—{z_+o_z (1—exp(—h/¢)) if h>0 ©

Early procedures that relied on an underlying Gaussian
assumption like maximum likelihood [19] were found to be
biased for small sample sizes. References [24] and [25]
developed a procedure that depends on a restricted maximum
likelihood. Minimum norm quadratic (MINQ) estimation used
by [27] requires linearity in the parameters of the variance-
covariance matrix.

First, a discussion of the conventional and proposed fitting
steps will be provided in Sections II and III respectively.
Section IV will discuss a quasi-block-jackknife method for
generating parameter confidence intervals.

In Section V, some numerical examples are given to
demonstrate the robustness of the non-linear rank-based
procedure. In Section VI, some simulation studies will
compare the NLWLS and the robust estimators in terms of
efficiency and validity over a family of contaminated normal
error distributions. The programs were used to compute the
results in Sections V and VI were written in R3.2.2
programming language [26]. These R codes are available to
the reader from the authors.

II.NON-LINEAR WEIGHTED LEAST SQUARES (NLWLS)
The variogram estimates (;?(h)) in both (1) and (2) are

correlated with non-constant variances [4]. These are
violations of independence and heteroscedasticity in the
general assumptions underlying ordinary non-linear least
square (NLOLS), so the NLOLS cannot be applied in this
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case. Therefore, [4] suggested a non-linear weighted least
squares (NLWLS) to fit a variogram.

A.NLWLS to Fit a Variogram
The weights used in NLWLS are suggested by [4] as

|N (h)|/(;/(h;0))2, and the NLWLS is approximated by

minimizing the norm as:

SN (0] (r(hs0)) )(7(n)=r(nz0)) @y
i=l
where n is the number of lags, }/(hi ;0) is the theoretical

variogram model whose form is known up to € , and }9() is

the empirical variogram estimated at n lags.

B. Standard Errors of NLWLS Estimators

The standard error of the parameters resulting from
NLWLS is similar to its counterpart in linear WLS, except the
design matrix X of the linear model is replaced by the

N x p matrix of partial derivatives at 0 (the Jacobian matrix at
0) anp(é), where D, (é)z[a}/(hi ;é)/ﬁﬁjl,

i =12,.n; j=1,2,..,p, where p is a number of parameters

and n is a number of observations. So we can approximate
the standard error for a NLWLS by

where;

w, (é):|N (hi )|/[;/(hi ;é)T; and W is a pxp diagonal

matrix with entries W, 's in the main diagonal.

III. RANK-BASED ESTIMATORS FOR NON-LINEAR MODELS

For a vector u in R" the pseudo-norm (rank-based norm)
n

||.||(p is defined as || u||¢ = Za(R (Ui ))Ui , where R (Ui )
i1

denotes rank of U; among U,U,,....U, , a(t)= go(t /(n +1)) ,
and ¢ is a non-decreasing, square-integrable score function
defined on the interval (0,1) [10]. Consider the general

nonlinear model:
Y, =f,(0)+¢; i=12,..,n (6)

where f; are known real valued functions defined on a

compact space ® and ¢,6,...,5, are independent and

identically distributed random errors with pdf h (t) and cdf

H (t), were H (t) is unknown. Let y =(Y,, Yo, Yn)y

and f(a):(fl(e)_f(9)__",["(9))’. Given a norm || . ||f on n-

2

space, a natural estimator of @ induced by the norm is a value
6 which minimizes the distance between the response vector
y and f(a) ;Le.,

y —£(0)

6 = Argmin, , j %)

where || u ||§ = Zn:u [ is the Euclidean norm.
i=l

A.Rank-Based Procedures to Fit a Variogram

For the rank-based procedures, one can simply replace the
norm | . [ in (7) y the pseudo-norm | u ||w = Zn:a(R (u, ))ui .
i=l

One of the properties of a rank-based fits is that it’s robust to
outliers in response space (y-space) [1], [10].

If the nonlinear model (6) has an intercept, i.e. can be
rewritten as:

Yi=l,a+0; (8)+q. i =12,...,n ®)

where S :((72,¢) ,and 1, is a vector of n ones. Then the

estimator of the parameters, f , is:

B,= Argmin seo

y-e(8), ©)

and the intercept a can be estimated by a location estimate
based on the residuals € =y —g(ﬁ¢) . Reference [10]
suggests to use the median of the residuals to estimate « ,
which denotes by &, =med {€} .

The model in (3) can be rewritten as

[0 it h=0
7(0)=1 g (nip) it n>0 (19)

where 0 = (T,ﬁ ')’ . Thus, }/(h,ﬂ) is a nonlinear function with
intercept (the nugget 7 ).
Let 7 denote the vector of empirical fitted values ( 7(h ))

of the variogram, and let ¢ (ﬁ’)denote the vector of the

parametric modeled values (g (h; p )) Then the estimators of

the parameters of the variogram, z and /3, are

7, =med{€| (11)
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ﬂ¢ = Argminﬁe@

7 -a(s), (12)
respectively, and é¢ = (1:5 ,ﬁ:wr )’ :

B. Standard Errors of Non-Linear Rank-Based Estimators

The approximate standard error of the rank-based non-

’
. . - ~ A ! . .
linear estimators for HW = (rs s ﬁw ) above with a score ¢, is

given by

se.(d, )= s.e.[(fs B )J: diag[v; [(r B/ ) D (13)

where V p is the variance-covariance matrix of the estimator

with a given score ¢, VAq, defined by

nfl T"Z 0!

(o'(4.)o(s.)) "

! 0 7

s 0

where 7, and 7, are an estimator of the scale parameters

and 7, respectively, these scales were developed by [18],
given by
T = Jq)(u)qoh (u)du (15)
7, =(2h(H " (172))) (16)
where
@, (u)=-h"(H"(u))/h(H"(u)) (17)

and h is a probability density function of the model errors.
7 and T,

» can be computed by the Rfit package [16] on
R3.22.

C.Optimal Scores

The rank-based analysis aforementioned in Section III-A
depends on the selection of a score function ¢(-), If the form
of the underlying error distribution is known, we can obtain an

optimal score function that minimizes the variance of the
estimator.

From (15), 7, ! can be rewritten as

1

7 = Jo(u)g, (u)du

0

:[;I«)(u)wh (u)du/[j(p:<u>du]”][j¢:<u>du]”
=p[ ;prﬁ (u)du ]=le(_h)

thus,
r(;l:p I(h) (18)

where p is a correlation coefficient and /I (h) is a Fisher
Information. Therefore, maximizing p,/I (h) means

minimizing 7, , but the maximum of p,/I (h) is satisfied
when p=1. This is accomplished by taking go(u ) =, (u )

So (15) is the score function which optimizes the rank-based
analysis [10], [22].
References [15] and [22] have recommended to fit a model

(8) with Wilcoxon score @y (U)= \/E(U —1/2), then plot
the normal Q-Q plot of its residuals €, to determine the error
distribution.

We can then choose the optimal score (p(u ) , for example if
the error distribution is normal, then the optimal score

function simplifies to @(u)=®"'(u), which is the normal
scores (where @ is the cdf of N (0,1)).

D.Hogg-Type Adaptive Procedure to Choose the Optimal
Score

As we mentioned in Section III C, the optimal score
function can be chosen by the distribution of the residuals €, .

Reference [11] proposed an adaptive procedure to choose the
optimal score; this procedure is a fully efficient rank-based
procedure for testing and estimation, for more details see
Chapter 10 of [12].

Let 6y =(€.€,,....€, )' be a vector of Wilcoxon residuals
of model (8), [12] proposed pair of statistics Q, and Q, (Q;is

a measure of skewness and Q, is a measure of tail heaviness)
as:

Q, (&, )=—U_ — (19)
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where U_a is the mean of the upper a%, M, is the mean of

a
the middle %, and L, is the mean of the lower % of the
residuals €, . Reference [29] suggested a set of cutoffs to

select the optimal score function as:

¢, = 0.36+(0.68/n)

|q7 -

_]2.17-(3.01/n)n<25
2.24—(4.68/n) n =25

Cy,, =2.73-(3.72/n)

Uga

|2.63-(3.94/n) n <25
|2.95-(9.37/n) n>25 (20)

and his scheme was recently discussed by [17]. Depending on
these cutoff values, one can select the optimal score function
as follows:

<c <c
o If Q lq1 and Q. a2 then select
Pent2 (U30.15,0.65,-1,2,0)
<c c, < <cC
e If Q =c, and <@ =G, , then select
Prens (U ;0'3’_1’2)
<c >C
° If Q] lq1 and QZ fa2 s then select ¢’benl3 (U;O.S,—l,Z)
c, <Q, <c <c
o If w <Q =Gy, and Q. <¢,, , then  select
Doz (U30.25,0.75,-1,1,0)
c, <Q, <c ¢ <Q,<c
o If ' Q Yal gnd a2 Q. ‘a2 then select @, (U)
¢, <Q, <c >C
o If lq1 Q Yl and Q. ‘a2 then  select
Pos (U30.25,0.75,-1,1,0)
>C <cC
o o1 Q7% and Q. =<c,, ,  then  select
Do (U30.35,0.85,-2,1,0)
>C c, . <Q,<c
o If >, and Q: <Cu; » then  select

Prew (U30.7,-2,1)
s IfQ >c, and Q, >c, . thenselect ¢, (u;0.5,-2,1)

@

where @, (u)=+12(u—1/2) is Wilcoxon score. The

remaining score functions are defined as:

Doenti (U;S],S2,S3) =
{((s3 =s,)/s,)u+s,

S

if 0<u <s,

s if 5, <u <l

(pbemz(U;SI,SZ,S3,S4,SS)=
(s,—s,)/s,)u +s, if 0<u <s,
(s,=s,)/(1=s,))(u—s,)+s, ifs <u<landu>s,
S Otherwise

5

quem} (U;Slﬂszﬂss) =
S, if 0<u<s,

((s,=s,)/(1=s,))(u—s,)+s, if s <u<l

Prens (U;SI,SZ,S3,S4)=
S, if O0<u <s, (22)
((s,=5,)/(s,=5,))(u=s,)+s, ifs,<u<l

In this paper @, (u), - (u;O.S,—2,1), and
Prons (U30.25,0.75,-1,1,0) , are denoted WILX, BENTI, and

BENT4 respectively. We applied this procedure in Section V-
A to choose the optimal scores to fit the variogram model.

IV.IMPLEMENTATION

A.Utility: Simulation Convergence Rate

Reference [3] have used the Newton-Raphson algorithm in
their simulation studies to estimate the parameters in (4), but
they found around 10% of the simulations fail to converge.

The nlminb  function within stats package in
R 3.2.2 programming language [26] was used in this paper to
estimate the parameters in (4) and (12). The nlminb function
uses an unconstrained and box-constrained optimization that
depends on PORT routines.

To avoid the initial values problem to estimate the
parameters, we used the grid initial values search procedure.
We ran this procedure over possible values of the parameters

(nugget(), sill (6 ), and rang(4)).

In our simulation study in Section VI, a grid of 6 possible
values for the nugget and 20 possible values for the sill and
the range were used. We found the grid initial values search
procedure with these grid values is adequate, and all the cases
converge. This procedure certainly increased the utility of the
estimation procedure.

B. Efficiency: Asymptotic Relative Efficiency

In this paper we used another robust nonparametric method
to obtain the asymptotic relative efficiency between NLWLS
and the rank-based estimator. This method depends on a

median absolute deviation (MAD). Let 0 be the true estimate
we used to generate the simulations, and ék . be the estimate

of the k" model at i" simulation, then, we define MAD of the
k " model as

MAD, =Median,

6., 0| 23)
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Let MAD, be the MAD of NLWLS model, then the

asymptotic relative efficiency (ARE) of the k" rank-based
estimator with respect to NLWLS estimator is given by

ARE =MAD, / MAD, (24)

Hence, values of this ratio less than 1 are favorable to the
NLWLS while values greater than 1 are favorable to the

k™ rank-based estimator. We applied this in simulation

studies (Section VI) to prove the efficiency of our method to
fit the variogram models.

C.Validity: Quasi-Block-Jackknife Method for Constructing
Confidence Intervals for Variogram Model Estimates
As we mentioned in Section II, (;?(h)) in (1) and (2) are

correlated, thus the usual standard nonparametric jackknife,
and standard nonparametric bootstrap methods perform poorly
for confidence intervals unless these correlations are
negligible [30]. There are many improvements suggested to
develop the bootstrap and jackknife methods for correlated
data.

One of these improvements is the quasi-block-jackknife;
this method is suggested by [3].

Let Z :{Z (s;):s, eRYi :1,2,...,n2} be a random field

in nxn equally grid lattice generated using variogram

models (3) with true parameters 6 = (r,o-z,(zﬁ) . For our case

the quasi-block-jackknife method to construct the confidence
interval for # can be summarized as follows:

i. Calculate the variance-covariance matrix C (h;0) of the

r
generated data with true parameters 6 = (7,02,¢) , Where

C (d . ;0) is defined as

if d, =0

if d, >0 25)

J r+o0’
C( ijsa): T+O'2_7/(dij;0)

where y(dijgﬂ) is defined in (10), and [d uJ are the
entries of the n? xn? distance matrix D .

ii. Calculate a Cholesky decomposition for C as follows:
C =LL"'. Then find the transformation U =L"'Z . This
U is approximately uncorrelated and normally
distributed with mean 0 and variance 1 (i.e. U N (0,1)).

iii. Divide the region into B non-overlapping equally size
blocks, each block of size |. These blocks
areU” ={Ub b :1,2,...,8} . Note (I )(B ): n? and each
U, is of size | . Similarly, divide the distance matrix

D into B non-overlapping equally size blocks, each

block of sizel?, these blocks are
Cc’ :{Cb b :1,2,...,B}.Note(|2)(B): n'.

iv. Drop one block b at a time from U " to get a database
U, U, ...U;} where U =U"\U;j=12..B.
Similarly, drop one block b at a time from C~ to get a
database {C ., C,,....C, } where
C;=C'\C,:j =12.....B.

v. For each j =1,2,...,B , find the Cholesky decomposition

for CJ- as: Cj: J-L

’

. Then re-correlate U;F by

calculating Zf = L’}Uj .

vi. For a certain number of lags k, and for each Z; , estimate
the empirical variogram to get h and ?(h) from (1) or
(2), which we denote
(no7(ny)si =Leksi =128

vii. For each variogram estimated in step (vi), fit the
variogram model you used to generate the random field
above, this would be by (4) for the NLWLS or (12) for

the rank-based, let these estimates {é ;31=12,....B } .

viii. Calculate the standard error estimator of @ as:

e, 0)-|[ 2535003 _;)}“ )

j=l

_ B
where é:(l/B)Zéj .
j=l

ix. Finally, construct the (1 —(x)% confidence interval for 6

as
(;’Aizazs.e.jk (0) (27)

There are some conditions necessary for the quasi-block-
jackknife method: the number of blocks B should be large
enough respect to the number of the lags k and the effective

range ¢ [3]. Furthermore, the block size 1% should be greater
than the effective range (I2 > ¢) , with large enough block

size, so the data from different blocks is approximately
uncorrelated.
Reference [2] defined the

A=] p(h)dh as a measure of the strength of spatial

have integral  range
correlations over a region V (with volume }\/|), where
p(h) is the correlation at distance lag h.

The closed form of A for the exponential model (3) are
provided by [7] as: Agyponential = 27¢* /9. Thus, to get valid
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confidence intervals for @ =(r,0'2,¢),, it should be

(V|/A)>¢. This implies V |>¢A , and V |>27z4' /9 for

exponential model.

We used the block-jackknife method in our simulation
studies in Section VI to prove the validity of our method to fit
the variogram models.

V. ROBUSTNESS OF THE NON-LINEAR RANK-BASED
ESTIMATOR

We will examine some numerical examples to demonstrate
the robustness properties of the non-linear rank-based norm.

A. Wheat-Yield Data:

The wheat-yield data [5] were presented by [23] and these
data consist of yields on a 20x25 regular lattice (n =500).
Fig. 1 shows the locations of these measurements and the
relative variation of the yield values.

Reference [21] found in the east-west spectrum. This trend
was neither a linear nor periodic [5]. Reference [5] suggested
the median-polish procedure to remove this trend. After we
ran the median-polish procedure, we replace the yield values
by the residuals of this procedure, therefore, stationary can be
assumed in the east-west direction (90 degrees).

££0 24 488 & & &

| haQiiad aa@hda @ eee 50
0 | Sob g bbietse re et
e 00 eeeeeis L
® 22 side >4
0 |- GPeeetete0e . o 'Y - s
2200000 oo JS00se00e
¢ 44 44 20 =
o © 1 90000000000 ¢ 00000000000 -
£ | iddiidids  ded 40
5 0000 © 00000000 ©

. eeced
0 {eceecee €0
e0000se0e
:28: & 838 = I
21 2900090006000 9000:00000 >

T

Easting

Fig. 1 Sampling Locations of the Wheat-Yield Data (Distances are
measured in ft.)

A summary of the data indicates the maximum lagged
distance is 86.949 ft. Also, further exploratory data analysis
and examination detected an outlier at sits 191 and 208 of grid

locations (40.16,26.4) and (20.08,29.7) respectively, with

1.1475 and -1.225 median-polish’s residuals respectively.

A bubble plot presented in Fig. 2 indicates this outlier and
its spatial location. This outlier’s contribution to the Matheron
estimate can be shown in Fig. 3 is indicated by the points

above the dashed line. Here, we just considered that point with
distance 20.16717 , and 7(20.167)=3.229 because it is an

outlier in y- space, and this point is at site 208.

For the estimation step, 13 lags with at least 30 points in
each lag were used to ensure that the empirical variogram at
each point was well estimated; with maximum lag distance at
about half the maximum separation distance [14], [4].

As presented by [S], the data has an apparent exponential
variogram model (3). For the fitting step, as we mentioned
before, first the Wilcoxon (WLIX) was fitted for model (3)
using both the Matheron and Cressie variogram estimators.

00 0Po00 00000000 e 000000
eecoecococo®eecrcccococee
0 9000900000000 000ce0000o00®
I Y XYY I Y Y Y Y Y YYYYYYYY YY)
@cceccccsocecoceoocccececde
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Fig. 2 Bubble Plot of the Wheat-Yield Data (Distances are measured
in ft.)

10 20
Distance (h)

Fig. 3 Variogram Cloud of the Wheat-Yield Data
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The normal Q-Q and the density estimate plots of its
residuals can be seen in Fig. 4 (a). We can see that the
residuals are approximately heavy-tailed symmetric for the
Matheron estimate (1) in Fig. 4 (a) and for the Cressie
estimate (2) in Fig. 4 (b).

Now to get the optimal scores to fit the exponential model,
the Hogg-type adaptive procedures in Section III-D were
applied. The BENT4 score function was chosen for both the

Matheron and Cressie estimates. The plots of h and y(h),

Fig. 5 (a), show the NLWLS fit and rank-based fit for the
BENT4 score (with and without outlier and the Matheron
estimate), and Fig. 5 (b), shows NLWLS fit and rank-based
fits for the BENT4 score (with and without outlier and the
Cressie estimate).

Normal Q-Q Plot (Matheron) Normal Q-Q Plot (Cressie)
0.005 - o
(o] ]
$ 0.005- -1 8 o _..---
= - = Q---"
= » = 0 O--
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° @60 2 L
£ o g °
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Fig. 4 (a) The Normal Q-Q and Density Estimates Plots Based on the residuals 6, of the Wilcoxon Fit of Wheat-Yield Data (With Outlier)
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Fig. 4 (b) The Normal Q-Q and Density Estimates Plots Based on the residuals e‘W of the Wilcoxon Fit of Wheat-Yield Data (Without Outlier)
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Fig. 5 Plot of the Fits for the Wheat-Data

In Table I, we display the NLWLS, WILX, and BENT4 fits
for the Matheron and the Cressie estimates, using model (3).
Along with the estimates, we show the approximate

standard errors of the estimates S .e.(é ) that were discussed in

Sections II-B and II1-B.

TABLEI
WHEAT-YIELD DATA: EXPONENTIAL VARIOGRAM PARAMETER ESTIMATES
AND APPROXIMATE STANDARD ERRORS WITH AND WITHOUT OUTLIER (THE
MATHERON AND CRESSIE ESTIMATES)

Nugget (r) Sill (o‘z) Range (¢)

Model =i Without With Without With Without

Outlier Outlier Outlier Outlier Outlier Outlier

NLWLS 0.0570 0.0558 0.0844 0.0820 4.2711 4.2543

Approx.s.e. 0.0299 0.0273 0.0294 0.0269 1.3412 1.2510

WILX 0.0586 0.0586 0.0822 0.0790 4.2864 4.3980
Matheron

Approx.s.e. 0.0201 0.0200 0.0195 0.0194 1.1510 1.2412

BENT4 0.0593 0.0586 0.0818 0.0790 4.3995 4.3995

Approx.s.e. 0.0178 0.0140 0.0173 0.0137 1.0684 0.8744

NLWLS  0.0449 0.0450 0.0854 0.0830 3.9742 3.9993
Approx.s.e. 0.0234 0.0219 0.0231 0.0216 0.9399 0.9149
WILX 0.0525 0.0516 0.0786 0.0768 4.3982 4.3979
Approx.s.e. 0.0166 0.0144 0.0162 0.0140 1.0381 0.9203
BENT4 0.0441 0.0516 0.0869 0.0768 3.9862 4.3995
Approx.s.e. 0.0134 0.0125 0.0131 0.0121 0.6460 0.7981

Cressie

By comparing the results in Table I, we can see that:
a. For the sill(o-2), regardless of the outlier, all the robust

procedures estimates outperformed (smaller s.e.) the
NLWLS estimate with regards to the standard error of the
estimates (for both the Matheron and Cressie estimates).
The BENT4 outperformed (smaller s.e.) the WILX

estimate regardless of outlier (for both the Matheron and
Cressie estimates).
b. For the range(¢), regardless of outlier, all the robust

procedures estimates outperformed the NLWLS estimate
with regards to the standard error (smaller s.c.) of the
estimates (for the Matheron estimate). The BENT4
outperformed the WILX estimate regardless of outlier (for
the Matheron estimate).

c. For the range(¢), regardless of outlier, the NLWLS

outperformed (the smallest s.e.) the WILX estimate (for
the Cressie estimate). The BENT4 outperformed (the
smallest s.e.) the NLWLS and WILX estimates regardless
of outlier (for the Cressie estimate).

VI. SIMULATION STUDY

We now present the results for some simulations that
investigate the utility, validity, and efficiency of the rank-
based fits (with the Hogg-type adaptive procedures) compared
with NLWLS. All of these simulations were performed on
spatially correlated data in R? with east-west direction (90
degrees) and 22.5 degrees of tolerance to avoid anisotropy
issues.

We used the exponential model (3) of the wheat-yield
example and we set the true values of the parameters € as
follows: 6 :(r,az,qﬁ)' —(0.056,0.082,4.375) , which is
close to the fitted coefficients in Table 1.

The RFsimulate function within the RandomFields
package [28] using R 3.2.2 programming language [26] was
used to simulate these models, and for each model we
generated 3,000 Gaussian random fields of n? =1600

spatially correlated points on a 40x40 equally grid square
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lattice within [O,IOO]X [0,100] . These simulations were
obtained by using the direct matrix decomposition method.

We partitioned the equally grid square 40x40 into
B =16 blocks each of sizel =100. n2,1%, and the B were
chosen under the conditions in Section IV-C.

Next, we chose the normal distribution N ( =00 = 12) ,
e =0%, € =5%, ¢ =10%, and
€ =20% for randomly contaminated for each simulated data
and equally number of contaminations in each block (i.e. in

with  proportion levels

each block there are (1 /16)é contaminations).

In the estimating step: We used the Cressie estimate, and
the number of lags is 34. As we discussed earlier in this paper,
and based on the recommendations of [14], we used at least 30
points in each lag and the maximum lag distance is about half
the maximum separation distance.

In the fitting step: This step is performed using NLWLS,
WILX and the adaptive procedure (AdSch). It should also be
mentioned with regards to the importance of three parameters

(nugget(‘r), sill(c?), and range((é)) in respect to the
effectiveness on ordinary kriging. The nugget (r) and sill

(c?) influence the kriging variances, and the range (¢)

parameter influences the ordinary kriging weights, so the
range (¢) is regarded as the most important kriging parameter
[8].

We considered the NLWLS, WILX and the adaptive
procedure (AdSch) nonlinear fits. For our efficiency study, we
investigated the empirical asymptotic relative efficiency

(ARE) for the parameters the nugget (T), sill (o) and the

range (¢) , as we suggested in Section IV-B. Table II displays

the results for the ARE’s for the robust methods relative to
NLWLS (in (24)) for each coefficient over the four
contamination levels.

TABLEII
EMPIRICAL ARE'S FOR THE ROBUST ESTIMATES OF THE PARAMETERS 7,57,
AND ¢ RELATIVE TO NLWLS FOR THE EXPONENTIAL MODEL (THE CRESSIE
ESTIMATE)

Contamination Level
e=0% €=5% €=10% ¢=20%

NLWLS, WILX 1.201  1.036 0.979 0.994
Nugget (7)

NLWLS, AdSch 1.166 1.027 0977 0.993

NLWLS, WILX  Sill 1.177 1234 1238 1233

NLWLS, AdSch (0'2) 1.144  1.199 1220 1.231

NLWLS, WILX 1.077 1.126 1.127 1.181
Range (¢)

NLWLS, AdSch 1.046 1.111 1.103  1.180

Table 11 shows for the sill (o)and the range (¢), the

robust estimates are more efficient than the NLWLS estimate
for all contamination levels. The WILX estimate shows
slightly more efficiency than the AdSch estimate over all
contamination levels.

For our validity study, the quasi-block-jackknife method
discussed in Section IV were applied to constructed the
empirical confidence coefficients of confidence intervals for
the parameters nugget (T) , sill (o) and the range (¢) as in

Section IV.

Table III displays the results for nominal 95% confidence
intervals, the method was used to estimate € is considered a
valid method if its empirical confidence closed to the nominal
confidence of 0.95.

TABLE III
EMPIRICAL CONFIDENCE COEFFICIENTS FOR THE NLWLS AND ROBUST

ESTIMATES OF THE PARAMETERS 7,6° , AND ¢ . THE NOMINAL CONFIDENCE
15 0.95, FOR THE EXPONENTIAL MODEL (THE CRESSIE ESTIMATE)

Contamination Level

0 e=0% €=5% €=10% e=20%
NLWLS 0978  0.953 0.856 0.545
WILX Nugget (7) 0992  0.941 0.785 0.417
AdSch 0.993  0.949 0.824 0.457
NLWLS sill 0.982  0.988 0.993 0.996
WILX 5 0.991 0.993 0.996 0.997
AdSch ©) 0.995 0.996 0.997 0.997
NLWLS 0.968  0.975 0.980 0.981
WILX Range (¢) 0977 0979 0.985 0.984
AdSch 0.981  0.983 0.988 0.988

For the sill (o°) and the range (¢), the NLWLS, WILX,
and the AdSch intervals are conservative. The exceptions: the
range (¢) are over 0% and 5% contamination levels, the

NLWLS intervals are valid (between 0.925 and 0.975).

VII. SUMMARY

Using the results of the numeric and simulation studies, we
find the following:

1. With regards to utility (convergence rate), the simulation
studies found the initial convergence rate for the Rank
estimates was 1% versus 12% for NLWLS. Utilizing the
grid initial values search procedure with the nlminb
function, previously discussed in Section IV-A, the
convergence rate was later improved to 100% for the
Rank procedure and 99.7% for NLWLS.

2. With regards to efficiency (ARE: Asymptotic Relative
Efficiency), the simulation studies showed that the ARE
for the Rank estimates was superior to NLWLS ranging
from 0.46% to 23.8% for the sill and range.

3. With regards to validity, (Empirical
Intervals), the Rank Based procedures
acceptable results.

4. The choice of estimation procedure does influence the
scoring function selected. In general, there is no optimal
score function. The adaptive procedure, however, is
shown to be most useful in the selection of a score
function.

Confidence
provided
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The numeric studies demonstrate the overall robustness of
the Rank estimates. The standard errors of the rank
estimates showed much less sensitivity than NLWLS.
Overall, variogram model chosen does influence the
results. But, the Rank estimate, in conjunction with the
Hogg-Type adaptive procedure, is a robust and superior
estimation procedure over NLWLS.

Procedures outperform NLWLS regardless
estimation procedure or level of contamination.

of the
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