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Abstract—Stoneley waves are interface waves that propagate at 

the interface between two solid media. In this study, the dispersion 
characteristics and wave structures of Stoneley waves in elastic 
multilayered plates are displayed and investigated. With a perspective 
of bulk wave, a reasonable assumption of the potential function forms 
of the expansion wave and shear wave in nth layer medium is adopted, 
and the characteristic equation of Stoneley waves in a three-layered 
plate is given in a determinant form. The dispersion curves and wave 
structures are solved and presented in both numerical and simulation 
results. It is observed that two Stoneley wave modes exist in a 
three-layered plate, that conspicuous dispersion occurs on low 
frequency band, that the velocity of each Stoneley wave mode 
approaches the corresponding Stoneley wave velocity at interface 
between two half infinite spaces. The wave structures reveal that the 
in-plane displacement of Stoneley waves are relatively high at 
interfaces, which shows great potential for interface defects detection. 

 
Keywords—Characteristic equation, interface waves, dispersion 

curves, potential function, Stoneley waves, wave structures.  

I. INTRODUCTION 

TONELEY waves, one kind of elastic interface waves 
existing at solid-solid interfaces, were first found by R. 

Stoneley in 1924, and the characteristic equation were further 
derived in two half space [1]. Stoneley waves provide a 
possible approach for non-destructive testing on defects or 
binding status at interfaces, and thus have drawn much 
attention since then. After the theories of the existence and 
uniqueness of Stoneley waves were demonstrated [2], [3], the 
effect of interface bonding status and media properties on basic 
properties of Stoneley waves has been studied thoroughly 
[4]-[6]. However, the investigation of Stoneley waves always 
remains in the range of the two half space. 

With the development of society, application of multilayered 
structures has become an inevitable trend in the engineering 
field. As an interest and important research topic, guided waves 
propagation theories in multilayered structures have been 
widely explored for over a century, and have been reported in 
the public literatures [7]. Typically, two matrix techniques, the 
transfer matrix approach and the global matrix method, are 
always adopted to the solution of guided waves [8]. The mature 
theories of guided waves in multilayered structures guarantee 
and promote further application of guided waves in 
non-destructive testing fields. However, the interface defect, 
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one most common and concern defect in multilayered 
structures, is still hard to be detected effectively. 

Stoneley waves are sensitive to the interface defects [9], 
[10], whereas the difference and complexity of boundary 
conditions for Stoneley waves seriously hinders the 
development of the specific theories of Stoneley waves from 
two half space to multilayered structure. For further research on 
properties of Stoneley waves and promoting its application in 
multilayered structures, the theoretical solution of Stoneley 
waves in a multilayered structure is an imperative but 
challenging problem to be solved. 

In this study, the characteristic equation and properties of 
Stoneley waves in an elastic multilayered plate are investigated. 
Taking a perspective of bulk wave [7], the potential functions 
of Stoneley waves in the nth-layer medium are determined, 
which realizes that the theories of Stoneley waves are expanded 
from two half space (given by R. Stoneley in 1924) to 
multilayered structures. Then taking three-layered plate as an 
example, the characteristic equation, dispersion curves and 
displacement distribution are presented and discussed. 

II. THEORETICAL SOLUTION 

A. Model Definition and Description 

An elastic multilayered plate is considered as shown in Fig. 
1. It is noted that layer 1 and layer N are defined as two half 
space (N is the number of all layers). Each individual layer is 
identified by an integer n from 1 to N. It is assumed that every 
two contiguous layers are in rigid connection. The origin of 
coordinate system is set at interface 1. The downward and 
rightward directions are the positive directions of z and x axis, 
respectively. Thus y axis is vertical to and out of x-z plane based 
on Cartesian coordinate system.  

The elastic multilayered plate can be analyzed by the 
assumption of plain strain, where elastic waves propagate along 
axis x and are unlimited distribution along y direction. The 
density and Lamé constants of nth layer material are separately 

defined as 
n 、 n  and 

n , where   and   are real numbers 
for elastic layers and can be approximated to complex numbers 
for viscoelastic layers. The thickness of the nth layer is nh  

(n=2, 3 … N-1). All field variables of the nth layer are denoted 
with a superscript n in analysis thereafter. 
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Fig. 1 Analysis model of the N-layered plate 

B. Assumption of Potential Function 

The displacement field of the nth layer should satisfy the 
Navier equation of motion, which is given as 
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In addition, the displacement field of the nth layer can be 

decomposed into two parts of the expansion wave and shear 
wave 

 
n n nu                                    (2) 

 

where n  and n  are the potential functions of the expansion 

wave and shear wave, respectively. 
There are some assumptions that 0n n

x z   ,  ,n n
y y x z   

and  ,n n x z   for general plane strain problem, which can 

guarantee the displacement component n
yu  is zero, and the 

other two displacement components are function of the 

variables x and z. In this paper, the potential function n
y , 

nonzero component of n , is represented by n . 

Since the energy of Stoneley waves is considered to 
concentrate at interfaces and exponentially decay away from 
interfaces, the potential function n  of the expansion wave and 

potential function n  of the shear wave in each layer can be 

written as: 
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where k is real wave number; { 1
nC , 2

nC , 3
nC , 4

nC  (n=1, 2 … 

N)} are unknown coefficients; 2 21 n
n Lc c   ; 2 21 n

n Tc c   . 

C. Theoretical Dispersion Characteristics 

Referring to derivation in [8], the displacement components 
and stress components should satisfy the continuity boundary 
conditions at each interface, thus there are eight homogeneous 
equations. These equations can be rewritten in the matrix form 
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Setting the determinant of coefficient matrix be zero, the 

characteristic equation of Stoneley waves in a three-layered 
plate is given as 
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Given the material parameters ( n , 
n , n=1, 2, 3) and 

geometric parameter (h2), (7) could be an implicit function of 
  and k . Instead of wave number k  with phase velocity c  
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(where k = / c ), the dispersion relation of c  and   will be 

obtained. 
Once the phase velocity of one Stoneley wave mode with the 

given frequency has been solved by (7), the corresponding 

unknowns coefficients ( 1
nC , 2

nC , 3
nC , 4

nC ) will be determined 

by (6). Thus the displacement components of each wave mode 
can be obtained explicitly by (2). 

III. RESULTS 

The dispersion characteristic and wave structures are two 
key properties for guided waves to be investigated. In this 
section, the dispersion curves and wave structures of Stoneley 
waves in three-layered plate are presented and discussed. It is 
imperative to declare that both the two interfaces in the 
three-layered plate satisfy the existence criteria of Stoneley 
waves [1], [7].  

A. Dispersion Curves 

The numerical results of the dispersion curves defined by (7) 
can be solved by the graphical edge method [11], and the 
simulation results are implemented by ABAQUS/Explicit with 
good accuracy on an appropriate mesh. The comparison 
between theoretical and simulation dispersion curves of 
Stoneley waves in an Al-Steel-Ti plate is displayed in Fig. 2. 
The simulation curves are expressed as a dashed line and 
numerical curves are shown using a solid line. The material 
parameters and geometric parameters of the media involved in 
this paper are listed in Table I. 

 

 

Fig. 2 Dispersion curves of Stoneley waves in an Al-Steel-Ti plate 
 

TABLE I 
THE MATERIAL PARAMETERS AND GEOMETRIC PARAMETERS OF MEDIA 

Media ρ(kg/m3) E(Pa) μ CL(m/s) CT(m/s) h(m) 

Al 2700 7.9e10 0.33 6584 3316 ∞ 

Steel 7850 2.1e11 0.3 6001 3208 0.04 

Ti 4500 1.25e11 0.33 6415 3231 ∞ 

 
In Fig. 2, there are two Stoneley wave modes (which are 

termed S1 and S2 modes) in the three-layered plate. The 
conspicuous dispersion occurs on low frequency band, and the 
phase velocities tend to be constant on high frequency band. In 
addition, the velocities of two Stoneley waves modes approach 

the corresponding velocities of interface waves in two half 
space respectively (the velocity of Stoneley waves at interface 
between Al and Steel is 3178m/s, and that at interface between 
Steel and Ti is 3203m/s). The limiting velocity of each Stoneley 
wave mode only depends on the material parameters of 
consisting media at the interface and is independent of the 
geometric parameter. 

The effect of the geometric parameter on dispersion curves 
of Stoneley waves is presented in Fig. 3. Two set of 
three-layered plates with identical material parameters and 
different thickness (0.04m, 0.02m) of the middle layer are 
considered. The solid line presents the dispersion curves with 
thickness h=0.04m, and the dashed line presents the dispersion 
curves with thickness h=0.02m. It is obvious that the range of 
conspicuous dispersion on low frequency band is mostly 
related to the thickness of the middle layer. The bandwidth 
where conspicuous dispersion of phase velocity exists, 
decreases with the thickness h. For example, the dispersion 
curve of Stoneley wave mode S1 with thickness h=0.04m 
approaches steady when the frequency is higher than 2.5MHz, 
and the dispersion curve with h=0.02m becomes essentially 
constant when the frequency is higher than 5MHz. 

 

 

Fig. 3 Dispersion curves of Stoneley waves with the different 
thicknesses of the middle layer 

B. Numerical Wave Structures 

Wave structures of guided waves reflect the particle 
displacement components distribution of guided waves in the 
structure, which is necessary for wave mode and excitation 
frequency optimum selecting in engineering application. For 
each Stoneley wave mode with certain phase velocity and 
frequency, the displacement components defined by (2) can be 
obtained. The displacement distribution curves of mode S1 and 
mode S2 with frequency 500 kHz are displayed in Fig. 4. The 
solid and dashed lines present the amplitudes of the normal and 
tangential displacement components (denoted uz and ux), 
respectively. The curves are normalized against the maximum 
amplitudes of two Stoneley wave modes. 

Notice that in Fig. 4, the normal and tangential displacement 
components of each Stoneley wave mode are relatively high at 
two interfaces in the three-layered plate, and decay sharply with 
increasing distance away from each interface. The maximum 
amplitude always occurs in Steel medium and is very close to 
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the interface. For each Stoneley wave mode, the difference 
between the amplitudes at two interfaces indicates the energy of 
Stoneley waves has an uneven distribution in the structure. 
Such wave structures provide Stoneley waves the outstanding 
performance in detecting interface defects and binding states 
than other guided waves with relatively low in-plane 
displacement at the concern interface. 

 

 

(a) 
 

 

(b) 

Fig. 4 Wave structures in an Al-Steel-Ti plate. (a) Stoneley wave mode 
S1; (b) Stoneley wave mode S2 

IV. CONCLUSION 

In this study, the characteristic equation, dispersion curves 
and displacement distribution of Stoneley waves in an elastic 
multilayered plate are presented. Supposing the specific 
potential function forms of the expansion wave and shear wave 
in nth layer medium, the characteristic equation of the 
three-layered plate was given in a determinant form. The 
characteristic equation indicates that the phase velocity of 
Stoneley waves in three-layered plates depends on material and 
geometric parameters (  ,  , h) of all layers and wave number 

k. 
 The dispersion properties of Stoneley waves in 

three-layered plates were investigated. Both the numerical and 
simulation dispersion curves were obtained, and the good 
agreement between numerical and simulation results 

demonstrates the correctness of theories of Stoneley waves in 
multilayered plates. There are two Stoneley wave modes in a 
three-layered plate. For mode S1, there is conspicuous 
dispersion on low frequency band, and the asymptotic phase 
velocity is 3178m/s (the velocity of Stoneley waves at interface 
between Al and Steel). For mode S2, the asymptotic phase 
velocity is 3203m/s (the velocity of Stoneley waves at interface 
between Steel and Ti). The asymptotic phase velocity of each 
wave mode only depend on the material parameters of all 
layers, and is independent of the geometric parameters. The 
geometric parameter (the thickness h) could produce a 
significant effect on the frequency bandwidth where the 
conspicuous dispersion exists. 

The wave structures of Stoneley waves in three-layered 
plates were displayed subsequently. The wave structures reveal 
the in-plane displacement of Stoneley waves is relatively high 
at interfaces, and decay sharply with increasing distance away 
from each interface. The difference between the amplitudes of 
each Stoneley wave mode at two interfaces indicates the energy 
of Stoneley waves has an uneven distribution in the structure. 

In this study, the dispersion properties and wave structures of 
Stoneley waves reveal the potential for Stoneley waves to 
interface defects detection in multilayered structures, which 
may be of value for further research. 
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