
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

576

Software Engineering Inspired Cost Estimation for
Process Modelling

Felix Baumann, Aleksandar Milutinovic, Dieter Roller

Abstract—Up to this point business process management projects
in general and business process modelling projects in particular
could not rely on a practical and scientifically validated method to
estimate cost and effort. Especially the model development phase
is not covered by a cost estimation method or model. Further
phases of business process modelling starting with implementation
are covered by initial solutions which are discussed in the literature.
This article proposes a method of filling this gap by deriving a cost
estimation method from available methods in similar domains namely
software development or software engineering. Software development
is regarded as closely similar to process modelling as we show. After
the proposition of this method different ideas for further analysis and
validation of the method are proposed. We derive this method from
COCOMO II and Function Point which are established methods of
effort estimation in the domain of software development. For this
we lay out similarities of the software development process and the
process of process modelling which is a phase of the Business Process
Management life-cycle.

Keywords—Cost Estimation, Effort Estimation, Process Modelling,
Business Process Management, COCOMO.

I. INTRODUCTION

THE creation and editing of business processes is handled

in the industry partially unsystematic in the sense that

no standardised method for process model creation is used.

Furthermore, initial estimation on the cost and effort for

process creation is not performed. Through dynamically

changing markets and induced pressure for change in

businesses, process management has become a dominant topic

for the enterprises [1],[2],[3],[4].

The modelling of processes and as a consequence thereof

the IT support with the execution, monitoring and especially

the improvement is already common practice [1],[3].

Albeit metrics for quality and faultiness exist, those quality

attributes enter existing tools and software and the actions

of users only slowly. Closely related to these metrics is

the question for cost and effort estimation for the creation,

maintenance and adaption of process models [5],[6].

Contrary to related fields, like software engineering (SE)

or software development (SD), an accepted practice for such

estimations is missing. As process models or processes in

general can be regarded as highly critical to the success of an

enterprise as well the claim that the quality of a product results

from the quality of the underlying process - "Process equals

Product" [7], the modelling and documentation associated

with it and the process itself is vital to the leadership of an

enterprise.

This work gives an overview of current research efforts into

cost and effort estimation in general. Based on the findings

Felix Baumann is with the University of Stuttgart, Germany (e-mail:
felix.baumann@informatik.uni-stuttgart.de).

we derive a method to estimate the cost of process modelling

beforehand.

Business process modelling is a sub task of the general

methodology of business process management which is to be

described by Müller[3] as the effort to document, create and

improve business processes and the IT support for it.

Business processes - hereinafter processes, as we are only

having these as the focus of our research - are described as

connected working steps that produce a specified output using

a specified input [4].

In this work, we do regard cost and effort as

interchangeable, as the cost for modelling is mainly based on

the cost for the modellers time, other cost inducing factors like

licences, equipment, soft- and hardware cost and support are

regarded as irrelevant in this paper[8].

A. Business Process Management

A business process is the sequence of correlated

tasks that produce a defined achievement using defined

inputs[4]. Business processes contain knowledge about

customer(groups), applications, success factors, strengths and

weaknesses, competition strategies and business goals. With

the knowledge of these aspects it is possible to increase

the added value of an enterprise[4]. A business process

begins and ends at a customer according to Gadatsch[9] and

Schmelzer[10]. Customers are not the only stakeholders that

formulate requirements for Business Process Management.

Business leadership also have their requirements on BPM

mostly in the form of key performance indicators (KPIs) in

order to inquire about their efficiency and effectiveness which

enables them to evaluate their actions and ideas[10]. BPM is

regarded as a bridge between business administration and IT

and helps enterprises to be more successful due to IT support.

We use the term of organization interchangeably for public

sector entities and private enterprises in this work. We consider

small and medium sized enterprises (SME) at the focus of this

work as they conduct a large number of BPM projects[1].

1) BPM Life-Cycle: The flow of BPM is described by the

BPM life-cycle[11]. This life-cycle clarifies the procedure of

BPM and explains the associated phases. The phases of the

BPM life-cycle are as following:

1) Analysis

2) Modelling

3) Implementation

4) Execution

5) Monitoring

6) Optimization

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

577

Analysis

Modeling

Execution

Monitoring

Optimization

1

2

4

5
Implementation

6

3

Fig. 1 BPM Life-Cycle

The cycle starts with the analysis phase (sometimes called

design phase) - See Fig. 1 indicated with a 1. In this phase

existing processes are examined as well as new processes to

derive value from are being identified. Furthermore, KPIs are

analysed and requirements for the description or improvement

of the processes are determined. The result of this phase is an

artefact that is referred to as process-as-is model - describing

the current available process - as well as a model that describes

how the process is to become. The definition of process-as-is

model is not entirely truthful according to Freund[1] as this is

not the model that will be modelled in the modelling phase.

We will refer to this model as process documentation (which

can also be a process model but does not necessarily have to

be).

In the modelling phase the process model itself is being

modelled. This is done in a modelling language or notation that

has to be decided upon beforehand. Tool support is available

for most modelling languages, albeit their quality differs

significantly. Tool support varies from graphical modelling

environments, modelling repositories, web-based graphical

modelling environments with cloud and collaboration support

to drawing tools without embedded intelligence or support.

Knowledge from the first phase (Analysis) is incorporated

in this second phase. We describe the implementation phase

as an additional phase in order to distinguish the modelling

from the implementation. Some authors regard this as one

single phase as modelling and implementation are being used

interchangeably by some authors [1] this is also dependent

upon the selected modelling language, tools and the modeller.

We draw the line between those two phases as we see it

necessary to refine the process model in order for it to be

deployed on a workflow management system (WFMS) or

business process management system (BPMS) and executed

using IT support [12].

The execution phase is when the process model deployed

in a BPMS if the BPM is backed by IT support or it can be

executed without IT support as standalone processes where

involved parties are themselves responsible for following the

given process model.

As BPM is based on a continuous improvement process[1]

there is always a monitoring phase in which data is collected

during execution. Analysing this data is not to be confused

with testing, which can be regarded as a separate phase after

implementation. We do not describe the testing phase as this

is out of scope of this work. Data acquired in the execution

phase can be used in the optimization phase to improve process

models. From this phase the life-cycle can start over but with

every increment of the life-cycle the process is to be improved

as more data is available for better decisions and analysis in

every phase.

B. State of the Art

The topic of business process management (BPM) is

currently discussed not only academically but also from a

wide range of practitioners. It is being developed and refined

almost daily which can be observed by the crowing number

of participants in the BPM-network 1, the occurrence of a

multitude of new blog posts 2, the emergence of new languages

and modelling standards rooting in BPMN - like CMMN or

DMN. Furthermore, BPMN 2.0 is evolving and the acceptance

and prevalence of this method is growing [1]. BPM can be

regarded as established and mature enough for production[9].

Surveys like the yearly global CIO-study from IBM 3 and

the survey on situation analysis by Müller [3] at the University

of Stuttgart give further indication that BPM is researched

academically and further refined.

C. Research Method

For this work, we have researched in university libraries, the

German Nationalbibliothek 4, journals5, with Google Scholar
6 and searched the Internet using Google 7 for the following

search terms:

• (Effort|Cost) Estimation (Method*)

(Software Engineering|Business Process

Management|BPMN|Business Process Modelling)

We have discovered the following number of results per search

term (using Google Scholar).

• "Effort Estimation" "Software Engineering" 8190
• "Effort Estimation" "Business Process Management" 543
• "Effort Estimation" BPMN 112
• "Effort Estimation" "Business Process Modelling" 166
• "Cost Estimation" "Software Engineering" 15200
• "Cost Estimation" "Business Process Management" 861
• "Cost Estimation" BPMN 326
• "Cost Estimation" "Business Process Modelling" 413
• "Effort Estimation Method" "Software Engineering" 315
• "Effort Estimation Method" "Business Process

Management" 5

1https://network.camunda.org
2http://www.column2.com,http://www.bpm-plus.de,http://www.

bpmn-buch.de
3http://www-935.ibm.com/services/us/en/c-suite/csuitestudy2013/
4http://www.dnb.de
5Business Process Management Journal, Knowledge and Process

Management, International Journal of Business Process Integration and
Management

6https://scholar.google.com
7https://www.google.com

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

578

• "Effort Estimation Method" BPMN 2
• "Effort Estimation Method" "Business Process

Modelling" 4
• "Cost Estimation Method" "Software Engineering" 344
• "Cost Estimation Method" "Business Process

Management" 10
• "Cost Estimation Method" BPMN 7
• "Cost Estimation Method" "Business Process

Modelling" 6
From these results we have analysed the top 10 results (sorted

by relevance in Google Scholar) for applicability and discarded

non-related findings. It is obvious that the more mature field

of software engineering yields more results than the more

specialized query for business process modelling or even for

the language specific query for BPMN.
Through reviewing these articles it is obvious that the topic

of effort estimation is mentioned in scientific literature but

not extensively researched. Furthermore, consulting companies

seem to have developed internal models and methods due to

the nature of their operation but those are likely to be not

scientifically backed and founded as well as not published.

Based on these observations it can be concluded that there

are currently no established and recommended standardized

practices of how to estimate the cost of business process model

creation within BPM.
The proposed forecast models published are not to be

applied in the modelling phase as they require input values that

are only present after the modelling phase. Effort estimation

is only possible in the implementation phase as earliest

[13],[6],[14],[15],[16].

D. Approaches and Methods
A complete estimation for BPM projects is described

by Bankhofer and Nissen [17], Çulha and Dogru[18] and

Thiemich and Puhlmann [19] by combining all phases of the

BPM life-cycle or by combining the modelling phase and

implementation phase. In these works no direct calculation

of the modelling phase is described. It can only be derived as

a proportion of the total cost. Further research is conducted to

identify factors that influence the modelling effort and should

be considered relevant for our proposed method. The following

influencing factors have been identified and are considered

in our estimation approach. The aspect of process maturity

as described by Allweyer [20] and Fisher [21], input factors

and model size [13], [14],[15], complexity [22], [5], [6], risk

management [23], [24], teamwork and personnel [1], [9], [25],

[4], [26] and best practices [27],[28].
The identified relevant works base their proposals for effort

estimation on the existence of an already existing process

model. This reflects to having completed the modelling phase

and estimating the implementation phase. Furthermore, this

process model has to be complete and correct[15]. Real world

situations differ from these assumptions as many companies do

not have correct process models available, processes and their

documentation are incomplete or obsolete or in other cases do

not exist at all [1], [29].
The generation of a process model is similar to conducting

a software creation project, as a process model is akin to

software in the regard that it can be executed on a BPMS

(as it is the case with BPMN 2.0) or can be displayed as code

(see XML representation of BPMN 2.0 8). Another example

is the WS-BPEL modelling process which is according to

the specification9 and partially lacking graphical support in

modelling tools (see Eclipse BPEL Designer 10 not primarily

visual but code centric[30].

We compare the phases from the BPM life-cycle (Fig.1)

with the phases from software development and display the

proposed matching in Table I. This matching encourages

us to see similarities between cost estimation methods from

software development which we will discuss further in this

work. Based on this possible adoption we contrast methods and

processes of effort estimation from SD to BPM and evaluate

their portability to this domain.

TABLE I
MAPPING OF BPM AND SD LIFE-CYCLE PHASES (ADAPTED FROM [13])

Phases BPM life-cycle Phases Software Development

1. Analysis 1.1 Requirements Specification
2. Modelling 1.2 System and Software Design

3. Implementation 2.1 Implementation and Unit Test
2.2 Integration and Systems Test

4. Execution 3. Operation and Maintenance
5. Monitoring

6. Optimization

We will discuss selected effort estimation methods from SD

regarding their ability for adaption for BPM. We omit the

discussion of agile methods as they require existing process

models as a basis which are considered missing for our method

[13], [18]. Baklizky et al. [13] propose in "Business Process

Points-A Proposal To Measure BPM Projects" a method to

enumerate BPM project points which allows them to estimate

the project size. This method also requires existing models

and accompanying documentation to be present and is not

applicable to the modelling phase. This method is applicable

for the implementation phase.

E. Effort Estimation Methods from Software Development

We briefly describe a selection of identified effort estimation

methods from the domain of software development. This list

contains methods that we discuss for further adaption for our

problem setting.

1) Function Point: Function Point (FP) was developed in

1973 by Albrecht [31], [32] and is an analogy and weighting

method that estimates the effort for a project based on its

size and complexity. Function Point is being used by IBM

since 1981 [32] which displays its acceptance. For FP the

functions of a software are counted and in classified in

categories. Based on the five categories of a function (Input,

Output, Files, Inquiry, Interface) the user is able to get a

number of "Unadjusted Function Points" (UFP) depending on

the weighting of each function in one of the categories of

complexity (Low, Average, High). In the next step the degree

of influence [32] is calculated over 14 technical complexity

8http://www.omg.org/spec/BPMN/2.0
9https://www.oasis-open.org/committees/tc_home.php
10https://eclipse.org/bpel

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

579

factors where each factor is weighted between 0 (no influence)

and 5 (high influence). There is a maximum of 70 points for

this factor. Afterwards the Total Complexity Factor (TCF) is

to be calculated by the division of the sum of all factors by

100 and then adding 0.65. Afterwards the UFP are multiplied

by the TCF in order to receive the adjusted Function Points.

The Result is therefore in the range of 65% and 135% of the

original UFP. The factors are based on empirically research

studies by Albrecht. With the help of an experience table,

initially created by the IBM, it is possible to translate the

Adjusted Function Points to person months (PM). Enterprises

can develop their own experience table which possibly reflects

their own situation better and increases accuracy over more

conducted projects.

2) Use Case Point: The Use Case Point (UCP) method

was developed in 1993 by Karner [33] and is based on the

procedure of the Function Point method. UCP is applicable

for object oriented software development but FP and UCP

are not directly mappable [34]. Frohnhoff describes the

Use Case Point method as follows: "A Use Case covers

a contract between the stakeholders of a system regarding

the system’s behaviour. The Use Case describes the system’s

behaviour under various conditions as a reply to request from

a stakeholder, called actor. An Actor triggers an interaction

with the system in order to reach a specific goal. The system

replies under consideration of the interests of all stakeholder.

Depending on the special system request and the request

context there can be a different ordering of the system’s

behaviour or different scenarios. The Use Case encompasses

all possible different scenarios". Due to the similarity of Use

Case Point to Function Point in its execution procedure we

omit its description in this work.

3) COCOMO: The Constructive Cost Model (COCOMO)

was developed by Boehm [35] in the early 1980s. Input values

for the effort estimation are KLOC (Kilo Lines of Code) 11.

The Project Effort (PE) in person months (PM) is defined by

(1):

PE = m ∗ KLOCn (1)

The factor m and the metric number n are based on empirical

data. Projects are classified in three complexity classes:

• "organic mode" for easy projects (m=2.4, n=1.05)

• "semi-detached" for medium difficult projects (m=3,

n=1.12)

• "embedded" for complex projects (m=3.6, n=1.2)

The COCOMO model contains a description of how each

project is to be classified according parameters like tool

support, environment, team size and schedule. Boehm[36]

developed an update to COCOMO which is called COCOMO

II with the intention to improve the estimation capability and

to map different project categories. In COCOMO II three

sub-models are introduced

• Application Composition Model

• Early Design Model

• Post-architecture Model

11Boehm uses Kilo Delivered Service Instruction with is identical to KLOC

II. PROPOSED METHOD

The three discussed methods are each taking the input

size as a base for the estimation. For Use Case Point and

for Function Point these are points that are weighted using

empirical values from a table. The weighted points are then

indirectly or directly translated into an effort estimation [34].

Constructive Cost Model (COCOMO) II uses Lines of Code

(LOC) as input size. There is a distinction between SLOC

(Single Line of Code) and KSLOC (Kilo Single Line of Code)

for a stack of 1000 lines of code in the original COCOMO

method.

The lines of code of a process model are hard to estimate

and are dependent upon the modelling language or method.

Furthermore, it is not possible to make a qualified statement

about the lines of code of a process model at the situation

where there is not process documentation available. The

process has to be documented first. Therefore, it is necessary

to employ other methods to derive the input size for the

estimation model. We have identified the following input

values and factors as a possibility to derive the input size (See

II-A).

The early design model of COCOMO II is intended for the

planning phase in software development and can therefore be

transferred to the modelling phase of the BPM life-cycle III.

As there is a high overlap in this association it is suitable for

further investigation.

The post-architecture model is intended for the investigation

of maintenance efforts and is applied after software

development has started.

Both the early design model and the post-architecture model

(hereinafter called COCOMO II level 2 and level 3) are based

on the same mode of calculation. COCOMO II like COCOMO

uses KLOC as input size. Differences are the naming of

the exponential factor (formerly noted as n) as scale factors

and the linear factor (formerly noted as m) as cost driver.

Furthermore, Boehm[36] introduce a factor A that is based

upon experience values and recommended being set to 2.94
as initial value. The formula to calculate the effort is described

in (2).

Despite the early design model is considered most

promising for further inquiry we will discuss the scale factors

and cost drivers from the post-architecture model. Those

scale factors and cost drivers are also included in the early

design model. This enables us to give an outlook on possible

factors for the maintenance cost. Costs for the implementation,

execution, maintenance and optimization phase are not part of

this work and are therefore not discussed.

A. Input Values

In process modelling it is not directly possible to estimate

LOC beforehand. One possibility to estimate LOC is the

enumeration of tasks using a method to be specified and

derive LOC from this dependent upon a chosen modelling

language. Business process modelling allows for graphical and

for textual modelling, both result in source code. In the case

of BPMN 2.0 and BPEL this source code is related to XML

(See 1). In this source code every modelled element (task,

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

580

TABLE II
LINES OF CODE FOR BPMN OBJECTS

Object XML-LOC
Activities 6
Artefacts 6
Messages 10
Events 8
Pools 7
Lanes 7
Average 7 (rounded down)

interaction, message flow etc.) is represented with a certain

(minimum) number of lines of code. The number of lines of

code per specific element is dependent upon the language and

further factors like implementation (e.g. BPMN extensions)

and tool support. For our proposed method there is derived

LOC (See Table II) and points available as input values.

Listing 1 BPMN XML Description of an Activity (From [37])

<xsd : e l e m e n t name=" t a s k " t y p e =" t T a s k " / >

<xsd : complexType name=" t T a s k ">

<xsd : complexConten t >

<xsd : e x t e n s i o n bas e =" t A c t i v i t y " / >

</ xsd : complexConten t >

</ xsd : complexType >

The simplest method to derive points is to enumerate all

visual elements of the process modelling that will be created

during modelling and summing them up. The multiplication

of this sum with a factor that has to be defined would yield a

derived amount of lines of code.

When modelling in BPMN 2.0 the following objects are

mainly used [1] and need to be enumerated:

• Activities and Transactions

• Events

• Gateways

• Pools

• Lanes

• Data objects

• Incoming and outgoing communication

Activities and transactions, as well as involved participants

(in the form of pools and lanes) can be estimated reasonably

well beforehand but this is not true for the number of gateways

needed. Heuristics can be considered as a basis to derive

the number of gateways from a given number of activities

and participants. We consider such heuristic models for future

research.

B. Scale Factors

Besides the input value there are further factors to be

considered: Not every process with the same amount of

activities and events is equal. They can differ vastly in their

complexity, process duration and the degree of parallelism.

This influences the effort necessary to model these processes.

More effort can be necessary for modelling more complex

models as those models can be modelled semantically correct

by the modeller but result in run time errors when executed

[1]. Additional awareness during modelling is indicated in

such cases as errors found during run time are more costly

to correct than errors not introduced into the model in the

first place. Complex process models warrant thorough testing.

This is also an example of the so called soft factors like

adeptness of the modeller. A skilled or adept modeller knows

the limitations and pitfalls of the given modelling language

and can produce valid and adequate models with less effort

than an inept modeller.

Furthermore, we consider scale factors like team cohesion,

precedentedness of the process to be modelled or the maturity

of the modelling process.

Based on the four Ps of marketing [10] "Product, Price,

Placement and Promotion" four categories of cost drivers for

developing software do exist in software development [38]:

Product, Personnel, Platform and Project. We provide the

following example for these categories:

• Product: Cost driver here is the size of the process to be

modelled

• Personnel: Modellers, analysts and programmers involved

in the creation of a process model

• Platform: Time and size restrictions depending upon the

BPMS or environment where the process models are to

be deployed

• Project: Concurrent modelling at different locations

Those cost drivers are to be expected in business process

modelling and we consider them in our model.

All three effort estimation methods described before

(Function Point, Use Case Points, COCOMO II) are applicable

(with adaptions) for the use during the modelling phase of

the BPM life-cycle. These methods require - besides weighted

input values - additional factors like quality, complexity and

re-usability. Those factors can and should be stored during

the application of the effort estimation method in order to

increase the accuracy over time. Furthermore, it is possible

with these methods to introduce new factors which is necessary

for estimating BPM related efforts. The main disadvantage

of adapting the Use Case Point method is the inexactness

of the estimation and the lack of practical experience [34].

Due to the large interpretation range of what an actor is due

to a clear definition of actors and the inexact mapping of

transactions to activities during the execution of this method it

is possible to receive skewed results[34]. As Use Case Points

method is based on the Function Point Method for which

more experience and literature is available we do not consider

this method further in this work. Function Point Method is

not suitable for a general effort estimation method for the

modelling of processes as its factor list is not available for

this domain as of the moment of writing. As we have not

acquired real project / process data yet we issue the warning

that results may vary and an inexactness is to be expected when

applying it. Function Point also does not take the quality of the

product to be developed into consideration [39]. We see a valid

approach in combining Function Point method with COCOMO

II for the derivation of LOC which are needed as input values

for COCOMO II by using the resulting Unadjusted Function

Points (UFP) from an intermediary step of Function Point.

This combination is the key concept of this work.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

581

C. BPM Function Point

Function Point derives the project’s effort subject to

its scope and difficulty[32]. The underlying method of

Function Point is the determination of the so called Function

Points by counting the input and output data, data objects,

interfaces and queries and allocating points to them[34],[32].

Those five categories are functions of the software (to be

implemented) and can be regarded as business transactions.

For the estimation of a business process (model) this business

transaction term is fitting. A process is also characterized by

its input and output and whilst being executed a business

process management system (BPMS) must store data and

states associated with a process execution [1].

One activity in a process model correlates to one business

transaction in the Function Point method. While counting

the Function Points they are classified in one of three

complexity classes ("Easy", "Average", "High"). Depending

on the classification they are multiplied with weights ranging

from 3 to 15. These factors need validation which we have

not yet performed but are about to in a validation phase. As a

baseline we choose the Function Point factors [36], [32]. Those

factors have to be updated after a project is completed as the

estimation effort increases in accuracy with completed projects

and adjusted factors. The five steps for counting Function

Points are applicable to our scenario as follows:

1) Step 1, Categorizing a requirement into one of the five

groups.

2) Step 2, classify by "Easy", "Average", "High". At this

stage only the complexity of separate modelling objects

is to be classified and not the complexity of the process

model as a whole. After completion of step 1 and 2 the

result is a number of unadjusted Function Points (UFP)

which can be combined with COCOMO II and be used

as input variable when the determination of LOC is hard

or impossible.

3) Step 3 Adjusting the Function Points with scale factors.

The list of factors is provided by the International

Function Point Users Group (IFPUG 12) for a variety

of different programming languages. At the moment

this work is performed no list for BPM or a modelling

language is available. This is considered a restriction in

using this method as of now. As we lay out real world

data and exemplary projects are absent for this work

we have not yet compiled such a factor list ourselves.

We plan on composing a factor list in follow up

work. Despite this restriction we describe the remaining

steps to give a full overview and describe this method

completely.

4) Step 4 Calculation using the complexity adjustments

described in Table III does fit into the BPM context.

Other Methods like Mark II Function Point [40] expand

the list of factors and adjust them. We propose an

adjustment described in Tab.IV. In this step points are

distributed according to the element and this is to be

weighed/adjusted in total. The factors are associated

12http://www.ifpug.org

with weighting factors and summarized, for the sum to

reach a maximum of 60 points [34], [41].

5) Step 5 calculates the adjusted Function Points from

the previously collected unadjusted Function Points in

order to extract the effort from the IBM effort table

[42] in the last step. Another possibility is to derive a

table with experienced values oneself and to update the

original table which can be obtained from IFPUG after

project completion. Updating and expanding this table

with experienced values increases the accuracy of the

effort estimation from project to project.

TABLE III
FUNCTION POINT CATEGORIES ADAPTED FROM [43]

Complexity of Components
Function-Point Category

Low Average High

External Inputs 3 4 6
External Inquiries 4 5 7
External Outputs 3 4 6

Internal logical files 7 10 15
External interface files 5 7 10

TABLE IV
FUNCTION POINT CATEGORIES MATCHING BPM FUNCTION POINTS

Complexity of Components
Function-Point Category BPM Function Point

Low Average High

External Inputs Inputs/Message 3 4 6
External Inquiries Activities and Events 4 5 7
External Outputs Outputs/Message 3 4 6

Internal logical files Data-objects 7 10 15
External interface files Pools and Lanes 5 7 10

TABLE V
FP ADAPTED FROM [41]

Function-Point Category BPM Function Point

Quantity (see LOC) Sum of Model Entities
Quality Quality / Accuracy of Model

Complexity Complexity of Model
Experience Process / BPM Experience

Development Tools modelling Tools
Programming Language modelling Language

1) Summary of BPM Function Point: Due to the lack of

appropriate conversion tables and missing project data it is

currently not possible to implement steps three through five.

We can not consider this method validated as of now due

to these shortcomings. We plan on expanding research to fill

this gap. Despite its shortcoming we consider this a promising

approach to estimate the size of project models beforehand.

Even without completing steps three to five, the user is enabled

to collect or estimate unadjusted function points which can be

used as input values for COCOMO II.

D. BPM COCOMO

Based on the fine granularity of the choice of factors and

input variables for the estimation as well as the possibility

to employ LOC or Function Points for input data COCOMO

is the most promising method to be adapted as an effort

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

582

Input size
from documentation

or estimation
Calculate BMP Apply Scale Factors Calculate Cost Drivers E ort

Fig. 2 BPM COCOMO method overview

estimation method for BPM. We present an adaption of

COCOMO for the domain of BPM which we call BPM

COCOMO. In this method the input data / size is derived

analog to the Function Point method in order to have a virtual

number of lines of code (LOC). The unadjusted Function

Points as described before can be weighed better and more fine

grained using COCOMO II. The extensive list of scale factors

of the COCOMO II phase models "Early Design Model" and

"Post-Architecture Model" (also named Stage 2 and Stage

3)[36] provide ample opportunity to adapt scale factors and

cost drivers for BPM COCOMO. See figure 2 for an overview

of the BPM COCOMO method. Starting with an idea or a

process documentation of the process that is to be modelled

one derives the number of entities to be modelled. Using this

information a Business Model Point count is determined which

then gets adjusted by scale factors and cost drivers.

1) Determination of Input Values: In order to state the LOC

of the process model it is necessary for them to be derived first

as they can not be estimated directly. For a direct classification

it is necessary to enumerate the following objects

• activities

• events

• message flows

• control flows

• gateways

• data objects

• process participants

and then multiply those with the associated necessary LOC for

their description (See Tab. II). This will yield the total LOC

and is further used as an estimate [5],[6]. With this estimation

it is not considered the fact that the modelling of the different

object is of variable complexity. For example it is possible for

an activity to have a multitude of control flows which would

result in a higher number of LOC. Furthermore, not all objects

are already known at the phase of modelling and therefore can

not be taken into this estimation.

2) Derivation of Business Model Points (BMP): Table VI

proposes an adaption of the complexity metrics for the domain

of BPM. With this and the values from (Tab.IV) we derive the

UFP. We count the objects and classify them accordingly to

the complexity classes which then results in Business Model

Points following the procedure from Function Point method.

3) Factor Adaption for BPM COCOMO: The effort in

person months is calculated by (2):

PE = A · SizeE ·
17∏

i=1

EMi (2)

We keep the original value for A from Boehm[36] of 2.94. Due

to the addition and omission of factors (see VII the values for

SF and EF are changed. The values that are not changed and

are only considered with a changed meaning are attributed

with their original values. Additional Factors are added for

the adaption to this domain.

The scale factor is calculated using equation (3):

E = B + 0.01 ·
6∑

i=1

SFi (3)

Due to our changes the scale factor E lies now between

0.91 (unchanged to the original) and 1.312. The multiplication

factor from the cost drivers is now between 0.0618 and 108.35

due to the changed and added factors. In contrast to the

original COCOMO II we range from 0.0569 to 115.58 which

is deemed plausible.

The description of BPM COCOMO is complete but lacking

the explanation of the choosing and interpretation of adapted

scale factors and cost drivers. We omit this because of the

brevity of this paper.

III. DISCUSSION

For this work no real world project data could be acquired.

Proposals to companies for co-operations were made but came

to no fruition. We think this is because of a variety of reasons:

Enterprises do either have no such data available (process

models and associated documentation), have no capacity for

cooperation or regard such data as trade secrets. As no

cooperation could be found an evaluation of this method has

not yet been performed. We describe steps necessary for such

an evaluation and plan to perform this in an academic setting.

Referring to the determination of influencing factors and inputs

in COCOMO II [38] we propose an empirical evaluation.

Necessary for this are project data sets which include the

proposed and actual effort. Projects from the following type

should be considered for this evaluation.

• BPM introduction projects without existing

documentation

• BPM introduction projects with existing documentation

• Business Process Re-engineering projects

We suggest research on the evaluation of:

1) Evaluation of the proposed method in general to see if

it is valid and error free. If not then analyse if the core

concept is suitable for adaption and improvement.

2) Evaluation of the selected scale factors.

3) Evaluation of the selected cost drivers.

4) Evaluation of the selected values for scale factors and

cost drivers.

Dependent upon these results further influencing factors are

possible to be determined which then can be added to the

model.

A. Evaluation of the Proposed Method in General

For the evaluation of the proposed method in general

[39], [43] evaluate the results of COCOMO II by employing

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

583

TABLE VI
OVERVIEW COMPLEXITY METRICS ADAPTED FOR BPM FROM [5]

Category Input Activities / Events Outputs Data Objects Pools / Lanes

Easy Easy to Conceive / Easy Flow Easy to conceive / Easy application / 1-3 Lanes /
In Sequence In Sequence Short Storage Duration Pools

Average At different points in time Average Flow / At different points in time Repeated access / 3-10 Lanes /
Large number of Joins / Extended Storage Duration / Pools
Large number of Tokens Communication Intensive

High At different points in time, Complex Flow At different points in time / Generation of Events / > 10 Lanes /
Dependencies Complex Gateways Dependencies Much Communication Pools

TABLE VII
ADAPTION TABLE FOR BPM COCOMO WITH INPUT VALUES, SCALE FACTORS AND COST DRIVERS

COCOMO II BPM COCOMO Abbreviation

Input Values (K)LOC / Unadjusted Function Points Business Model Points to LOC
Scale Factors

Precedentedness Precedentedness PREC
Development Flexibility Development Flexibility FLEX

Architecture / Risk Resolution Architecture / Risk Resolution RESL
Team Cohesion Team Cohesion TEAM

Process Maturity (CMM) BPM Process Maturity (BPMM) PMAT
Levels of Process Documentation PDOC

Cost Drivers
Required Software Reliability Process Correctness-Level CORL

Data Base Size - -
Product Product Complexity Process Model Complexity CPLX

Developed for Reusability Level of Model Reuse RUSE
Documentation Match to Life-cycle Needs Documentation Requirements DOCU

Process Confidentiality CONF
Analyst Capability Analyst Capability ACAP

Programmer Capability Modeller Capability PCAP
Personnel Personnel Continuity Personnel Continuity PCON

Application Experience BPM Experience BPEX
Platform Experience Platform Experience PLEX

Language and Tool-set Experience Language and Tool-set Experience LTEX
Time Constraint Time Constraint TIME

Platform Storage Constraint Storage Constraint STOR
Platform Volatility Platform Volatility PVOL

Use of Software Tools Use of Software Tools TOOL
Project Multisite Development Multisite Development SITE

Required Development Schedule Required Development Schedule SCED

COCOMO-
Abbreviation

Scale Factor Weighting
Description VL L N H VH XH

PREC
Precedentedness 6,2 4,96 3,72 2,48 1,24 0
Are there similarities to existing systems / models?
Further factors: Precedetness of the process, description of project type

FLEX
Development Flexibility 5,07 4,05 3,04 2,03 1,01 0
Further factors: Restriction due to modeling guidelines or best practises

RESL
Architecture/Risk Resolution 7,07 5,65 4,24 2,83 1,41 0
Further factors: Quality of available process documentation

TEAM
Team Cohesion 5,48 4,38 3,29 2,19 1,1 0
Further factors: Existances of a Chief Process Officer (CPO)

PMAT
BPM Process Maturity (BPMM) 7,8 6,24 4,68 3,12 1,56 0

PDOC
Levels of Process Documentation 8,6 6,88 5,16 3,44 1,72 0
Further factors: Is a process documentation available? Is process documentation up to
date? Is the process documentation suitable to derive input values from?

Fig. 3 BPM COCOMO Scale Factors (adapted from [34])

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

584

EFi
COCOMO-

Abbreviation

Cost Driver

VL L N H VH XH

Pr
o

d
uc

t EF1 CORL Process Correctness-Level 0,82 0,92 1 1,1 1,26 -
EF2 CPLX The complexity of the process model 0,73 0,87 1 1,17 1,34 1,74
EF3 RUSE Levels of Model Reuse - - 1 1,07 1,15 1,24
EF4 DOCU Documentation Requirements - - 1 1,1 1,23 -
EF5 CONF Process Confidentiality 0,8 0,9 1 1,1 1,2 -

Pe
rs

o
nn

e
l EF6 ACAP Analyst Capability 1,42 1,19 1 0,85 0,71 -

EF7 PCAP Modeller Capability 1,34 1,15 1 0,88 0,76 -
EF8 PCON Personnel Continuity 1,29 1,12 1 0,9 0,81 -
EF9 BPEX BPM Experience 1,22 1,1 1 0,88 0,81 -
EF10 PLEX Platform Experience 1,19 1,09 1 0,91 0,85 -
EF11 TLEX Language and Toolset Experience 1,2 1,09 1 0,91 0,84 -

Pl
a

tfo
rm EF12 TIME Time Constraint - - 1 1,11 1,29 1,63

EF13 STOR Storage Constraint - - 1 1,05 1,17 1,46
EF14 PVOL Platform Volatility - 0,87 1 1,15 1,3 -

Pr
o

je
c

t EF15 TOOL Use of Software Tools 1,17 1,09 1 0,9 0,78 0,75
EF16 SITE Multisite Development 1,22 1,09 1 0,93 0,86 0,8
EF17 SCED Required Development Schedule 1,43 1,14 1 1 1 -

Fig. 4 BPM COCOMO Cost Drivers (adapted from [34])

performance metrics which can be applied to the evaluation

of our method. They calculate a relative error (RE):

RE = (estimated effort − actual effort)/actual effort (4)

This yields a derivative of the estimated effort where small

values mean small derivations from the estimation and validate

the model.

B. Evaluation of Scale Factors

The selected scale factors are to be checked for their

relevance for the estimation model and for plausibility.

According to the results from the evaluation of the method

in general scale factors are to be selected or deselected and

their influence on the relative error should be observed.

C. Evaluation of Cost Drivers

Using the evaluation approach from scale factors it is to

be observed what the selection or deselection of cost drivers

changes in the relative error. Furthermore, the relevance of

the cost drivers in the phase of modelling within the BPM

life-cycle has to be checked, based on real world data.

Evaluating the cost drivers for the modelling phase can lead

to discovery of relevant cost drivers for the remaining phases

implementation, execution and optimization.

D. Evaluation of Chosen Weights / Scale Factors

Besides the selection of relevant influencing factors the

associated scale factor is of importance as deviations in

both directions will effect large relative errors in the

model. Wieschollek [44] states that modelling and process

documentation are related 2:1 based upon his experience.

This is neither scientifically quantified nor researched and can

therefore neither confirmed nor denied. With large deviations

of the estimations to the actual effort the method of counting

Business Model Points (BMP) is to be re-evaluated and

adapted.

IV. CONCLUSION

In this work the domain of business process modelling and

associated domains are reviewed for methods and procedures

to estimate cost or effort for process model creation. No

method could be derived from the field of project or change

management, as they do not estimate the effort directly but as

a derivative from the total cost. The same holds true for the

associated field of software engineering where [17] derives the

cost from the total cost.

Especially in the software development domain no

consideration of the modelling phase of the BPM life-cycle

has occurred. There are authors that have researched effort

estimation in business process management / business process

modelling [13], [6], [14], [15] and [16] have examined agile

and other widely adopted methods like Function Point or

COCOMO. They base their effort estimation models on

already existing models which only come into existing in later

phases of the BPM life-cycle. Those effort estimation methods

or models are to be placed in the technical level [1] or in the

implementation phase of the BPM life-cycle or late. A clear

distinction between functional and technical levels is blurred

and those layers overflow [1]. This imprecise distinction can

be regarded as a reason for the lack of proper effort estimations

before.

A. Conclusion of Effort Estimation Methods

Out of the multitude of effort estimation methods from the

domain of software development which would allow adaption

for the use in the domain of BPM, COCOMO II is regarded the

most adept one because it is well established and validated.

Its fine grained description of factors makes it suitable for

adaption. COCOMO has been continuously improved since its

implementation in 1981. Individual adaptions of COCOMO

like ADA COCOMO[45] or the counting of ObjectPoints

[46] for object oriented software development prove that

COCOMO is suitable for adaption. We could not identify an

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

585

adequate effort estimation method for the modelling phase

of BPM which is why we adapt COCOMO in this work

for this domain and create a proposed method we call BPM

COCOMO. Furthermore, we introduce the effort necessary

to create process documentation into the effort estimation

method. Previously this effort was not considered. This

process documentation effort is an additional scale factor

that influences the effort of modelling a process model. Our

proposed cost driver addition also influences the estimation.

Our method provides the possibility to create effort estimations

even without existing input values by deriving them using

Business Model Points (BMP). BMP can be derived during the

creation of process documentation. A statement of the quality

of BPM COCOMO can only be made after the model has been

verified and validated. Based upon the granularity of the model

and the vastness of scale factors this model can be extended

using empirical figures. Introducing and expanding empirical

figures into the model it can be improved gradually in

every execution step. Using this method academics and BPM

professionals ([44]) are enabled to validate their expectations,

experienced values and claims as well as improve and adapt

their own methods.

REFERENCES

[1] J. Freund and B. Rücker, Praxishandbuch BPMN 2.0, 3rd ed. München:
Hanser, 2012.

[2] J. Horan, Ed., Schlüsselrolle CIO, ser. CIO Studienreihe. IBM Institute
for Business Value, 2011.

[3] S. Müller, “Studienarbeit 2451- situationsanalyse: Bpm in deutschland,”
Master’s thesis, Universität Stuttgart, 2014.

[4] P. Posluschny, Prozessmanagement. Konstanz: UVK
Verlagsgesellschaft mbH, 2012.

[5] V. Gruhn and R. Laue, “Komplexitätsmetriken für
geschäftsprozessmodelle,” in Proceedings of the Modellierung 2006,
H. C. e. a. Mayr, Ed. Bonn: Gesellschaft für Informatik, 2006, pp.
289–292.

[6] K. Kluza and G. J. Nalepa, “Proposal of square metrics for
measuring business process model complexity,” in Computer Science
and Information Systems (FedCSIS), 2012 Federated Conference on.
IEEE, 2012, pp. 919–922.

[7] F. Leymann, “Managing business processes via workflow technology,”
in Tutorial at VLDB Conference, Seattle, September 2011.

[8] B. Mutschler and M. Reichert, Understanding the Costs of Business
Process Management Technology. Springer Berlin Heidelberg, 2013,
pp. 157–194.

[9] A. Gadatsch, Grundkurs Geschäftsprozess-Management, 7th ed.
Springer Vieweg, 2013.

[10] H. J. Schmelzer and W. Sesselmann, Geschäftsprozessmanagement in
der Praxis, 6th ed. München: Hanser, 2008.

[11] M. Weske, Business Process Management - Concepts, Languages,
Architectures, 2nd ed. Wiesbaden: Springer Berlin Heidelberg, 2012.

[12] T. Allweyer, BPMS: Einführung in Business Process
Management-Systeme. BoD–Books on Demand, 2014.

[13] M. Baklizky, M. Fantinato, L. H. Thom, V. Sun, E. P. V. Prado,
and P. Hung, “Business process points - a proposal to measure
bpm projects,” in Proceedings of the 21st European Conference on
Information Systems. ECIS 2013 Completed Research. Paper 2., 2013.
[Online]. Available: http://aisel.aisnet.org/ecis2013_cr/2

[14] B. Marin and J. Quinteros, “A cosmic measurment procedure for bpmn
diagrams,” The 26th International Conference on Software Engineering
and Knowledge Engineering, 2014.

[15] S. Mishra and C. Kumar, “Estimating development size and effort of
business process service-oriented architecture applications,” in Systems
and Informatics (ICSAI), 2014 2nd International Conference on. IEEE,
2014, pp. 1006–1011.

[16] E. Rolon, L. Sanchez, F. Garcia, F. Ruiz, M. Piattini, D. Caivano, and
G. Visaggio, “Prediction models for bpmn usability and maintainability,”
in Commerce and Enterprise Computing, 2009. CEC’09. IEEE
Conference on. IEEE, 2009, pp. 383–390.

[17] V. Nissen, M. Petsch, F. Termer, and M. Möhring, “A cost calculation
model for determining the cost of business process modelling projects,”
Ilmenauer Beiträge zur Wirtschaftsinformatik, vol. 2013-01, April 2013.

[18] D. Çulha and A. Doğru, “Towards an agile methodology for business
process development,” in S-BPM ONE-Scientific Research. Springer,
2014, pp. 133–142.

[19] C. Thiemich and F. Puhlmann, An Agile BPM Project Methodology.
Springer Berlin Heidelberg, 2013, vol. 8094, pp. 291–306. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-40176-3_25

[20] T. Allweyer, “Das business process maturity model (bpmm) der omg,”
November 2007. [Online]. Available: http://www.kurze-prozesse.de/
2007/11/08/das-business-process-maturity-model-bpmm-der-omg/

[21] D. M. Fisher, “The business process maturity model. a practical approach
for identifying opportunities for optimization,” Business Process Trends,
vol. 9, no. 4, pp. 11–15, 2004.

[22] J. Cardoso, “Evaluating the process control-flow complexity measure,” in
Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International
Conference on. IEEE, 2005.

[23] S. Jakoubi and S. Tjoa, “A reference model for risk-aware business
process management,” in Risks and Security of Internet and Systems
(CRiSIS), 2009 Fourth International Conference on. IEEE, 2009, pp.
82–89.

[24] H. Lhannaoui, M. I. Kabbaj, and Z. Bakkoury, “Towards an approach to
improve business process models using risk management techniques,”
in Intelligent Systems: Theories and Applications (SITA), 2013 8th
International Conference on. IEEE, 2013, pp. 1–8.

[25] R. Meziani and I. Saleh, “Towards a collaborative business process
management methodology,” in Multimedia Computing and Systems
(ICMCS), 2011 International Conference on. IEEE, 2011, pp. 1–6.

[26] W. M. Van Der Aalst, A. H. Ter Hofstede, and M. Weske, “Business
process management: A survey,” in Business Process Management.
Springer, 2003, pp. 1019–1019.

[27] A. Komus, BPM Best Practice - Wie führende Unternehmen ihre
Geschäftsprozesse managen, 2011th ed. Berlin Heidelberg New York:
Springer-Verlag, 2011.

[28] J. Mendling, H. A. Reijers, and W. M. van der Aalst, “Seven process
modeling guidelines (7pmg),” Information and Software Technology,
vol. 52, no. 2, pp. 127–136, 2010.

[29] M. Hinsch, Die neue ISO 9001:2015 - Status, Neuerungen und
Perspektiven -, 1st ed. Berlin Heidelberg New York: Springer-Verlag,
2014.

[30] T. van Lessen, D. Lübke, and J. Nitzsche, Geschäftsprozesse
automatisieren mit BPEL. Heidelberg: dpunkt Verlag, 2011. [Online].
Available: http://taval.de/publications/BOOK-2011-01

[31] C. Jones, Estimating Software Costs : Bringing Realism to Estimating
- Bringing Realism to Estimating, 2nd ed. Madison: McGraw Hill
Professional, 2007.

[32] T. Noth and M. Kretzschmar, Aufwandschätzung von DV-Projekten:
Darstellung u. Praxisvergleich d. wichtigsten Verfahren, 2nd ed. Berlin:
Springer, 1986.

[33] G. Karner, “Resource estimation for objectory projects,” Objective
Systems SF AB, vol. 17, 1993.

[34] S. Frohnhoff, “Use case points 3.0 : Implementierung einer use case
bezogenen schätzmethode für das software-engineering betrieblicher
informationssysteme,” Ph.D. dissertation, Universität Paderborn, 2009.

[35] B. W. Boehm, Software Engineering Economics. New York:
Prentice-Hall, 1981.

[36] B. Boehm and E. Harrowitz, Software Cost Estimation with Cocomo II.
London: Prentice Hall, 2000.

[37] OMG, “Bpmn 2.0 specification.” [Online]. Available: http://www.omg.
org/spec/BPMN/2.0/

[38] B. W. Boehm, “Cocomo ii model definition manual,” 2000.
[Online]. Available: http://sunset.usc.edu/research/COCOMOII/Docs/
modelman.pdf

[39] V. Khatibi, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi,
“Neural networks for accurate estimation of software metrics,” IJACT:
International Journal of Advancements in Computing Technology, vol. 3,
no. 10, pp. 54 – 66, 2011.

[40] C. Symons, “Function point analysis: difficulties and improvements,”
Software Engineering, IEEE Transactions on, vol. 14, no. 1, pp. 2–11,
Jan 1988.

[41] H. W. Wieczorrek and P. Mertens, Eds., Aufwandsschätzung in
IT-Projekten. Springer Berlin Heidelberg, 2007, pp. 205–223.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-48472-1_8

[42] IBM, Die Function Point Methode: eine Schätzmethode für
IS-Anwendungs-Projekte, ser. IBM Form. IBM Deutschland

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:2, 2016

586

GmbH, 1985. [Online]. Available: https://books.google.de/books?id=
dxzWPgAACAAJ

[43] V. Khatibi and D. N. A. Jawawi, “Software cost estimation methods:
A review,” Journal of Emerging Trends in Computing and Information
Sciences, vol. 4, no. 12, pp. 21–29, December 2011.

[44] M. Wieschollek, “Aufwandsschätzung für die prozessmodellierung.”
[Online]. Available: http://www.bpm-plus.de/2013/03/
aufwandsschatzung-fur-die-prozessmodellierung/

[45] B. Boehm and W. Royce, “Ada cocomo and the ada process model,” in
Proceedings. Third COCOMO Users Group Meeting, SEI, 1987.

[46] B. W. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby, “Cost models for future software life cycle processes: Cocomo
2.0,” in ANNALS OF SOFTWARE ENGINEERING, 1995, pp. 57–94.

