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Abstract—Effective statistical feature extraction and 

classification are important in image-based automatic inspection and 
analysis. An automatic wood species recognition system is designed 
to perform wood inspection at custom checkpoints to avoid 
mislabeling of timber which will results to loss of income to the 
timber industry. The system focuses on analyzing the statistical pores 
properties of the wood images. This paper proposed a fuzzy-based 
feature extractor which mimics the experts’ knowledge on wood 
texture to extract the properties of pores distribution from the wood 
surface texture. The proposed feature extractor consists of two steps 
namely pores extraction and fuzzy pores management. The total 
number of statistical features extracted from each wood image is 38 
features. Then, a backpropagation neural network is used to classify 
the wood species based on the statistical features. A comprehensive 
set of experiments on a database composed of 5200 macroscopic 
images from 52 tropical wood species was used to evaluate the 
performance of the proposed feature extractor. The advantage of the 
proposed feature extraction technique is that it mimics the experts’ 
interpretation on wood texture which allows human involvement 
when analyzing the wood texture. Experimental results show the 
efficiency of the proposed method. 
 

Keywords—Classification, fuzzy, inspection system, image 
analysis.  

I. INTRODUCTION 

ITH more demands in timber industries and more 
tightly controlled international requirements, timber 

industries are required to meet tighter security requirements 
such as more accurate identification of the correct timber 
species, prevention of fraud and illegal logging. The wood 
texture is examined from the timber surface through a 
magnifier that has 10 times magnification [1]. Several 
automatic tropical wood species recognition systems have 
been developed by [2]-[7] to analyze the macroscopic features 
on the wood surface texture.  

Statistical features are inherent to the content of images. 
Generally, different images will have different statistical 
properties [8]. The human-decision-based recognition system 
is basically based on visual inspection of the wood anatomy 
textures which can be presented as image data processing 
using statistical parameters representing the texture. In 
addition, fuzzy rules are capable of handling approximate data 
for sharply defined problems. Hence, the linguistic 
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interpretation of the human behavior provided by a fuzzy 
model could be useful to experts in determining the wood 
species. Due to its simplicity and similarity to human 
reasoning, fuzzy logic algorithms have been applied in various 
imaging applications [9].  

In this paper, we address the problem of wood species 
recognition based on statistical features that enables experts’ 
interference when analyzing the wood texture. Hence, we 
proposed a new fuzzy-based statistical feature extraction 
technique which focused on the pores distribution on the wood 
texture in order to mimic the experts’ interpretation on wood 
texture. The contributions of this work are firstly, to improve 
the man-machine interface in environments for computer-
aided training of human operators and secondly, the 
knowledge acquisition can be achieved for users by carefully 
checking the rules discovered from the training patterns. 
Therefore, the human operators are able to monitor the system 
by analyzing the statistical features generated from the 
proposed system. 

II.  PROPOSED METHODOLOGIES 

A. Image Acquisition 

The first step in the proposed wood species recognition 
system is the image acquisition of the wood surface texture. 
One of the characteristics that remain unique to each wood 
species even after undergoing the chemical procedures is the 
surface texture. The wood samples are in cubic form 
(approximately 1 inch by 1 inch by 1 inch in size). A specially 
designed portable camera with 10 times magnification is used 
to snap the images of the wood texture. The size of each image 
is 768 x 576 pixels. The wood images are pre-processed using 
homomorphic filters in order to enhance the image 
presentation. Homomorphic filters are used to sharpen the 
features on the image and flatten the lighting variations of an 
image. Therefore, illumination and reflectance on the images 
are removed.  

B. Feature Extraction 

The statistical feature extraction process consists of two 
steps namely pores extraction and fuzzy pores management 
(Fig. 1). The statistical features will only allow distinct pores 
to be acknowledged as characteristics of a wood species. 
Then, a neural network classifier is used to classify the wood 
species based on the statistical wood features.  

The first step in the proposed statistical feature extraction is 
the pores extraction process. Basically, binary images are 
created from the homomorphic filtered image where only 
black pores are present and only white pores are present as 
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