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Nonlinear Finite Element Modeling of Deep Beam
Resting on Linear and Nonlinear Random Soil

M. Seguini, D. Nedjar

Abstract—An accuracy nonlinear analysis of a deep beam resting
on elastic perfectly plastic soil is carried out in this study. In fact, a
nonlinear finite element modeling for large deflection and moderate
rotation of Euler-Bernoulli beam resting on linear and nonlinear
random soil is investigated. The geometric nonlinear analysis of the
beam is based on the theory of von Karman, where the Newton-
Raphson incremental iteration method is implemented in a Matlab
code to solve the nonlinear equation of the soil-beam interaction
system. However, two analyses (deterministic and probabilistic) are
proposed to verify the accuracy and the efficiency of the proposed
model where the theory of the local average based on the Monte
Carlo approach is used to analyze the effect of the spatial variability
of the soil properties on the nonlinear beam response. The effect of
six main parameters are investigated: the external load, the length of
a beam, the coefficient of subgrade reaction of the soil, the Young’s
modulus of the beam, the coefficient of variation and the correlation
length of the soil’s coefficient of subgrade reaction. A comparison
between the beam resting on linear and nonlinear soil models is
presented for different beam’s length and external load. Numerical
results have been obtained for the combination of the geometric
nonlinearity of beam and material nonlinearity of random soil. This
comparison highlighted the need of including the material
nonlinearity and spatial variability of the soil in the geometric
nonlinear analysis, when the beam undergoes large deflections.

Keywords—Finite element method, geometric nonlinearity,
material nonlinearity, soil-structure interaction, spatial variability.

I. INTRODUCTION

N the context of soil-structure interaction analysis, most of

the structures modeled as beam element where the beam
resting on foundation have found wide applications in
practical engineering structures (pipelines, piles, railway...
etc.). In fact, the importance of understanding the effect of the
soil-structure interaction and the behavior of a beam on
foundation has motivated a number of recent studies [1]-[6].
Hetenyi [1] and Timoshenko [2] were the first to attempt
prediction of the response of beam on foundation using a
simplified analytical method and a Winkler soil’s model [7].
However, several authors widely used the exact stiffness
matrix developed by [8] in the finite element analysis of beam
resting on Winkler soil [9]. Various constitutive models of
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beam resting on nonlinear soil [9]-[12] have been suggested
by different researchers to analyze the nonlinear soil behavior
on the beam response. Beaufait and Hoadley [10] presented a
finite difference methodology to simulate beam behavior
resting on elastic soil. Other researchers have also carried out
an experimental works and dynamic analysis of beam resting
on different soil model [13]-[17]. In addition, for the analysis
of soil-structure interaction problems, many models of
geometric nonlinear beam on foundation, based on the updated
and total Lagrangian formulation [18] and on the von Karman
theory [19] have been developed by various researchers.
Hosseini Kodkheili and Bahai [20] have advocated the use of
updated lagrangian formulation developed by [18] for the
geometric nonlinear static analysis of a pipe. The same
formulation was also used for the dynamic nonlinear analysis
of a 3D flexible riser [21]. Horibe [22] used the boundary
integral equation method to analyze the geometric nonlinear
response of a beam on foundation. Notably a new semi-
analytical approach for a geometric linear and nonlinear
analysis of beam resting on linear and nonlinear foundation
and based on the Euler-Bernoulli von Karman theory have
been presented by [23]-[25]. Al-Azzawi, Mahdy and Farhan
[26] developed a finite element model utilizing the Ansys
software to study the nonlinear behavior of beam resting on
linear and nonlinear Winkler soil. The results were compared
to those obtained by [27] which used a finite element and
difference method to analyze the nonlinear response of
Timoshenko beam on elastic foundation. In [28], finite and
difference element methods were also used to analyze the
large deflection of a deep beam resting on elastic soil; in fact,
the effect of the variation of the coefficient of soil’s subgrade
reaction and beam depth to length ration on the nonlinear
beam response was also studied. Furthermore, most of the
studies are restricted to analyze a very simple model of linear
and nonlinear beam resting on homogeneous soil without
taking into account the spatial variability of the soil properties.
In fact, recently it was pointed out that the probabilistic
analysis of beam on foundation by taking account the spatial
variability of soil’s properties is very important to determine
the realistic behavior of the structure in the case of soil-
structure interaction [29]. Moreover, early work on the study
of the behavior of the buried pipe modeled as beam are
concentrated on the effect of the spatial variability of the soil
properties on beam response. Elachachi, Breysse and Houy
[30] used a finite element probabilistic approach based on the
theory of VanMarcke [31] to quantify the effect of the spatial
variability of soil properties on the pipe response. In the same
context, a dynamic analysis of beam resting on random soil
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was carried out by [32]-[34]. Elachachi, Breyess and Denis
[35] studied also the effect of the spatial variability of the soil
properties on the behavior of a buried pipe, where the
modified Vlassov model of soil is used in the analysis. In
contrast, very few researches deal with the nonlinear beam
resting on nonlinear material random soil. Recently, a finite
difference method was developed to study the nonlinear
behavior of the pipeline resting on spatially random elastic
perfectly plastic soil [36] where the significant effect of the
correlation length of soil’s subgrade reaction on the pipe
response was shown through a numerical example.

This paper attempts to compare various new models of
beam resting on linear and nonlinear foundations and suggest
a suitable one. In fact, the finite element formulation based on
the Euler-Bernoulli von Karman assumption to analyze the
large deflection of the geometric nonlinear beam resting on
elastic linear and elastic perfectly plastic soil is used in this
study. Particular attention is focused on assessing the effect of
different properties on the response of the structure: the length
of beam, the external load, the Young modulus of the beam
and the spatial variability of soil’s properties such as the
coefficient of variation and the correlation length. The validity
and efficiency of the proposed model are shown by using the
numerical example developed by [28].

The obtained results show that the spatial variability of
soil’s properties has a direct impact on the overall accuracy of
the analysis. Therefore, it is expected that the developed
model that take into account the geometric nonlinearity of
beam combined to material nonlinearity and spatial variability
of the soil furnishes a more realistic behavior of the beam.

II. THEORY AND FORMULATION

A. Constitutive Relation for Geometric Nonlinear Beam
Resting on Linear and Nonlinear Soil

Considering a section of a beam subjected to a distributed
load as shown in Fig. 1, where uo(x) and wo(x) are the axial
and the transverse displacement of the point G of the chosen
beam segment respectively. Due to the deformation of the
beam, equilibrium equation can be defined. In fact, under the
assumptions of the Euler—Bernoulli beam based on the von
Karman theory, the following differential equation can be
obtained:

dhwy 3, (dw Y dPw, ) _ ()
El o 2EA( ) [ ] q(x)

where E and I are the Young modulus and the inertia of the
beam respectively.

By considering the mechanism of the soil-beam interaction,
the differential equation is written as:

d'w, 3 (dw,V(dw, )

where p(x) is the reaction of the soil, which is expressed as:

p(x) = bk w(x) 3)

Noting that ki is the subgrade reaction of the soil and b is
the width of the beam. Hence, the total potential energy
functional and the principal of virtual works are used to solve
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Fig. 1 Deformed beam element segment showing displacements

B. Derivation of the Stiffness Matrix of the Considered
Numerical Model

The strain energy ¥ of the beam-soil interaction system is
obtained by the summation of the strain energy of the beam ¥,
and the soil ¥ as:

y=y ty, @

The polynomial displacement function wy(x) of a beam
element is given by:

wo(x) = [N] A%} )

with

{Ae}:{wl;ﬂl;wz;ﬁz} (6)
N is the interpolation function’s vector and {A®} is the vector
of nodal displacement of a two nodes element. However, the
axial displacement, u, and the vertical displacement, w, of the

beam element can be expressed as:

dw,(x) )
dx

u(x,z) =uy(x)-z

w(x,z) = wy(x) (3

Consider the nonlinear strain-displacement relationship for
the von Karman formulation written as:

£, =&l +zgl ©

£ :duﬂJrl aw, : . :_dzw(, (10)
"o 20 dx )0 " dx?

where ¢_ and g0 are the longitudinal and the nonlinear strain

respectively and g}‘w is the curvature of the beam element.
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The internal axial force N, and the bending moment M., are
determined by [19] and are expressed as:

N -4 d_l(dLj an
. Tlode 2\ dx

M. _ =B d”o (%)2 _D¢ d’w, (12)
xr = "y 2 dx xx dxl

Note that A°

xx

B and D; are the extensional bending
and flexural rigidity of a beam element respectively and they
are defined as:

(A5 B D) = [ E(Lz.2)dx (13)

where 4 =FEA, B; =0and p¢ = EJ .

The strain energy of the beam ¥, is expressed as:
1 0 1 14
vi=5 [ (Vasior Mo (14)

By introducing (9)-(12) into (14), the strain energy of the
beam can be expressed as:

:_J- l:du(J (%)2:'2 +E1[d2w(,]2}dx (15)
2\ ax dx?

The derivative of axial displacement 44, is assumed to be
dx

small, therefore it can be neglected and (15) can be written as:

27? 2 2
v =L 4 l(%j v El| L g (16)
2% 2 ax dx

Noting that b is the width of the beam and ks is the
coefficient of subgrade reaction of the soil.

i e
oyttt () 2
o () 1) as)

V= 5 { }[Kba/{AP}*'Kfz]{Ag} (19)

e (4 . . .
where K,;] and Kbn, are the linear and nonlinear matrices of

rigidity of a beam element respectively. Hence, the strain
energy of the soil ¥ is defined as:

1 .
W, = Ejo bk, wo(x).wy(x)dx (20)

o= Y () V1IN )} @
vyl ics) @)

where K‘f is the matrix of rigidity of the soil.

For the case of nonlinear analysis of the elastic perfectly
plastic soil model, the coefficient of soil’s subgrade reaction
Ksoil for and element e is:

{ = kW,
b. =D,
Here P, signifies the ultimate subgrade reaction and S, the

soil yield displacement.
The virtual works is then written as:

0<w,<s, (23)

w, =S,

Sy +V)=0 (24)

with
V=-Ww, = J-; q(x)w,dx (25)
Vo= J‘OI {Ae} A-q} [N]ax (26)

where Wey is the external virtual work.
By substituting (19) and (22) into (4), we obtain the total
strain energy W which is expressed as:

(3l e o fla) (3l Yo en

Finally, by using (27) and (26) into (24), the incremental
equation of equilibrium is obtained as:

e fac) - e

(A" ={a) +{on) (29)

Equation (28) is solved by using the Newton-Raphson
iterative method, which is implemented in a Matlab code,
where {F} is the element force vector and [K¢] is the element
rigidity matrix, which expressed as:

K= K;+ Ki (&) + K (30)
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III. SPATIAL VARIABILITY MODELLING

Due to the deposition and the aggregation process of soil
medium, a complex heterogeneous soil results with a various
source of uncertainty of its properties. In fact, in the
geotechnical analysis it is very difficult to define the actual
behavior of soil and its effect on the structure response
without taking into account the spatial variability of soil
properties. However, the analysis herein presented is
performed in the context of a beam-soil interaction model,
characterized by the following noteworthy features: (a)
geometric nonlinear beam; (b) nonlinear elastic perfectly
plastic soil; (b) heterogeneous random soil. Therefore, the
local average theory developed by [31] is combined to Monte
Carlo simulations and used in this analysis, where the random
soil is subdivided into several zones. It is characterized by a
fixed mean my, a variance oi° various coefficient of variation
and correlation length L. which describes the distance over
which the correlation between soil properties tends to
disappear. The coefficient of soil’s subgrade reaction ks is
characterized by a lognormal distribution and its local average
is given by:

E[ksoil(D/)] = mk (32)

where the variance of ks is defined for each zone (i) of length
D; as:

Varlk,,, (D) = oly(D,) (33)

v(D;) is the variance function [30]. It depends on the spatial
correlation function p(x) and is determined by [31] as:

2 ("a-x . G4
7)=7 [a D)
with
pr=1-L for <z, (35)
L

¢

The variance function is obtained in a discrete formulation
by introducing (34) into (33):

D, .
- E if D/ < LC (36)
(D)=
i[l L] if D, - L,
D, 3D,

Finally, we used the local average subdivision method
developed by [37] to generate the random variable and
compute the covariance matrix Cjj of the coefficient of soil’s
subgrade reaction.

C, =Covlk,, (D,).k,, (D )] (37)

c, = O-T;{(t—l)z;/[(t—l)D] = 2071101+ (t+ 1) 7l + H D1} (38)

t=|i - j| is the difference between two spatial zones (7) and ())
in absolute value with same length (in our case D=D,=Dj)

IV. NUMERICAL STUDY

On the basis of the formulations presented in the previous
sections, a Matlab program has been written and
representative example has been presented to show the
efficiency of the developed model trough deterministic and
probabilistic analysis. However, the nonlinear analysis of a
simply supported beam subjected to a distributed load and
resting on linear and nonlinear soil as shown in Fig. 2 is
examined. Different beam lengths, external loads, Young
modulus of the beam and coefficients of subgrade reaction of
the soil were taken into account. The properties of the beam
and the soil are presented in Table I

q
EEXZLEXTIIIXX,

geezeisl

Fig. 2 Beam resting on elastic soil and subjected to a uniform
distributes load q

TABLEI
BEAM AND SOIL PROPERTIES

Symbol Parameters Range of values ~ Unit
b Width of beam 04 m
h Height of beam 0.8 m
L Length of beam 2,9, 15 m
Ey Beam Elastic Young modulus 25.10° kN/m?
v Poisson ration of beam 0.15 )
Ksoit Coefficient of soil’s subgrade reaction 10000 kN/m?
Su Yield displacement of soil 1 mm
P, The ultimate subgrade reaction 2.5 kN/m?
L. Correlation length of soil 2.4.6 m
Cv Coefficient of variation of soil 50,70,100 %
q Applied load 25,125250  kN/m?

A. Deterministic Analysis

In this section, a deterministic analysis of soil-beam
interaction system has been done to verify the efficiency of the
developed model. However, the obtained results from this
analysis were resumed in Table II and compared to those
available in the literature [28]. It is seen that the results are in
a good agreement especially when the beam is discretized in a
great number of beam elements (N = 25).

Tables III and IV list the maximum deflection and bending
moment of nonlinear beam resting on linear and nonlinear soil
respectively, for different values of applied load and beam
length. It is observed that the maximum deflection and
bending moment increased with the increase of the applied
load p and beam length when the beam is resting on nonlinear
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soil. In contrast, for the beam resting on linear soil, the
maximum deflection increased but the bending moment
decreased (L=15m). It is also observed that there is a little
difference between the obtained results from the nonlinear
analysis of beam resting on linear soil and the nonlinear
analysis of beam resting on nonlinear soil, in the case of a
beam having a smallest length L=2m and even if the applied
load increases. Furthermore, it is interesting to note that the
effect of the nonlinear behavior of soil on the response of the
beam appear when the beam has a considerable length.

TABLE II
MAXIMUM DEFLECTION, BENDING MOMENT AND SHEAR FORCE OF
NONLINEAR BEAM ON LINEAR FOUNDATION FOR VARIOUS VALUES OF Ng

ELEMENTS
Present study
[28] (b/L=0.4)
N~=5 Ne=15 N~25
Winax(m) 1.88x10° 1.964x10° 1.997 x10° 2,018 x107
Mina(kN.m) 11.81 11.95 11.98 12.01
SFmax (kN) 19.15 22.35 22.99 23.02

TABLE III
MAXIMUM DEFLECTION OF NONLINEAR BEAM ON LINEAR AND NONLINEAR SOIL FOR VARIOUS VALUES OF BEAM LENGTH AND EXTERNAL LOAD

L=2m (N~25) L=9m (N=25) L=15m (N&=25)
Wonee () P=25 P=125 P=250 P=25 P=125 P=250 P=25  P=125 P=250
(kN/m) (kN/m) (kN/m) (kN/m) (kN/m) (kN/m) (kN/m)  (kN/m) (kN/m)

Nonlinear beam on linear soil

1.997 x10° 0.1026 x107 0.2053x10° 3.905 x10* 20.32x10° 40.51 x10® 6.584 x10® 0.0342 0.0683

Nonlinear beam on nonlinear soil 1.998 x10° 0.1029x10° 0.2045x10° 7.043 x10° 41.19x10% 81.12x10% 56.47x10?

0.246  0.3776

TABLE IV
MAXIMUM BENDING MOMENT OF NONLINEAR BEAM ON LINEAR AND NONLINEAR SOIL FOR VARIOUS VALUES OF BEAM LENGTH AND EXTERNAL LOAD

L=2m (N=25)

L=9m (N:=25) L=15m (N=25)

Manax (KN.m) P=25

P=125 P=250 P=25

P=125 P=250 P=25 P=125 P=250

(kN/m) (kKN/m) (kKN/m) (kKN/m) (kN/m) (kN/m) (kN/m) (kN/m) (kN/m)

6230 1246 1136

5912 1179 6559 3414 6811

2222 1234 2430 607.7 2644 4020

Nonlinear beam on linear soil 11.98
Nonlinear beam on nonlinear soil  11.99  62.40 125
a
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Fig. 3 Effect of the variation of the Young modulus of the beam and the coefficient of subgrade reaction of the soil on the beam response, (a)
Maximum deflection of the beam, (b) Maximum bending moment of the beam

TABLE V
COMPARISON OF THE MAXIMUM DEFLECTIONS OF NONLINEAR BEAM
RESTING ON NONLINEAR SOIL, OBTAINED BY DETERMINISTIC AND
PROBABILISTIC ANALYSIS WITH A PROBABILITY OF 80% FOR DIFFERENT
VALUES OF THE COEFFICIENT OF VARIATION CV (%)
Maximum deflection (m)
(deterministic analysis)

Maximum deflection (m)
(Probabilistic analysis with Lc=6m)
Cv=50% Cv=70% Cv=100%
7.681 x10° 8.796 x10° 1.01 x10°

7.043 x107

B. Probabilistic Analysis

The example of a nonlinear beam of length L= 9m
subjected to a distributed load p=25 kN/m and resting on
nonlinear soil is considered in this analysis.

Fig. 3 shows the plot of the maximum beam deflection and
bending moment for different values of the Young modulus of
the beam and the coefficient of subgrade reaction of the soil
with Cv=70% and Lc=6m.

The results reveal that the maximum deflection and bending
moment increase as the Young modulus of the beam and the
coefficient of subgrade reaction of soil decrease. In fact, when
the beam and the soil are less stiff, the beam undergoes
moderately large deflections. Moreover, a cumulative
probability function was plotted for different coefficients of
variation (Cv=50%,70%,100%) and correlation length (2m,4m
and 6m) as shown in Fig. 4. It can be observed that there is an
increase in the maximum deflection and bending moment of
the maximum beam deflection when the coefficient of
variation and corelation length of the random ks increase. It
is observed also that the response of the beam is more
sensitive to the changes in Cv than to L. Therefore, Table V
shows the accuracy of the probabilistic analysis for the range
of coefficient of variation Cv considered and resume the
values of the maximum deflections obtained from
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deterministic and probabilistic analysis. From Table V, it can
be see the real influence of the coefficient of variation on the
response of the beam. In fact, with the increasing coefficient

(@)

/... IncreasingLc.. ]

Cumulative probability
«
&

Cv. = 70%
Lc=2m
Le=4m |
Lc=6m

i i :
o] 0.005 0.01 0.015 0.02
Maximum deflection (m)

of variation there is an increase in the maximum deflection
which largely exceeds the maximum deflection obtained by
the deterministic analysis.

(b)

1 T T

Increasitig Cv |

Cumulative probability
= o = o =
1] . ta (=9 -1

b
(S

Li=6m
Cv=>50%
Cv="70%
Cv=100%

01k -

i i N
o] 0.005 0.01 0.015 0.02
Maximum deflection (m)

Fig. 4 Cumulative distribution function for 1000 random realizations of maximum beam response, (a) Maximum beam deflection with Cv
constant and L variable, (b) Maximum beam deflection with Cv variable and L constant

As an illustration of the probabilistic results, 20 curves of
deflection, bending moment and shear force randomly selected
from a 1000 realizations for Cv=0.5% and L.~6m are shown
in Figs. 5 (a), (b), (c) respectively. From those figures, it can
be observed that for the probabilistic analysis, the maximum
deflection, bending moment and shear force are about 40%,
60% and 90% respectively compared with those obtained by
the deterministic analysis.

V.CONCLUSION

The response of a beam subjected to a distributed load was
investigated by modeling the beam as a geometrically
nonlinear structure resting on elastic and elastic perfectly
plastic foundation. For the lager displacement analysis of the
Euler-Bernoulli beam, the theory of von Karman is proposed
and the Newton-Raphson method is used to solve the
nonlinear equation of the soil-beam interaction system. In the
probabilistic analysis, the theory of the local average
combined to the Monte Carlo simulations is used to determine
the real response of the beam. However, the conclusions that
can be drawn from this study are:

(1) Accurate results are obtained using a great number of
beam elements (Ne).

(2) The modeling of the geometric nonlinear beam on elastic
perfectly plastic soil is more appropriate than modeling it
resting on elastic foundation.

(3) The beam with considerable length and subjected to the
incremental distributed load is significantly affected by
the soil nonlinearity and the influence of both the Young
modulus of the beam and the coefficient of subgrade
reaction of the soil is confirmed.

(4) The probabilistic analysis shows that the spatial
variability of soil properties as the coefficient of variation

and the correlation length have a dominant effect on the
estimation of the beam deflection. Therefore, it can be
seen that the proposed model is capable of giving accurate
results by using the probabilistic approach where this
analysis confirms the validity and the efficiency of the
proposed model. Furthermore, this work indicates that
geometric nonlinearity, soil nonlinearity and spatial
variability all contribute to the response of a foundation
beam under a distributed load.
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and probabilistic analysis with 20 curves randomly selected, (a)

Deflection of the beam, (b) Bending moment of the beam, (c) Shear

[2]
B3]

[4]

[3]

[6]

force of the beam

REFERENCES

Hetenyi, Beams on elastic foundations. Ann Arbor, MI: University of
Michigan Press, USA, 1961.

S. Timoshenko, Strength of Materials, Part 1, Advanced Theory and
Problems. 3rd ed., Princeton, NJ: Van Nostrand, USA, 1956.

S. Motohiro, K. Shunji and M. Takashi, “Structural modeling of beams
on elastic foundations with elasticity couplings,” Mechanics Research
Communications, vol. 34, no. 5-6, pp. 451-459, 2007.

C. Miranda and K. Nair, “Finite beams on elastic foundation,” ASCE
Journal of Structure Division, vol. 92, no. ST2, Paper 4778, pp. 131-
142, 1966.

M. Eisenberger and J. Clastornik, “Beams on variable two-parameter
elastic foundation,” Journal of Engineering Mechanics, vol. 113, no. 10,
pp. 1454-1466, 1987.

B. Y. Ting and E. F. Mockry, “Beam on elastic foundation finite
elements,” Journal of Structural Engineering, vol. 110, no. 10, pp. 2324-
2339, 1984.

171
(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

E. Winkler,” Die Lehre von der Elasticitaet und Festigkeit (The theory
of elasticity and strength),” Dominicus: Prag, 1867.

M. Eisenberger and D. Z. Yankelevsky, “Exact stiffness matrix for
beams on elastic foundation,” Computers and Structures, vol. 21, no. 6,
pp. 1355-1359, 1985.

D. Z. Yankelevsky, M. Eisenberger and M. A. Adin, “Analysis of beams
on nonlinear Winkler foundation,” Computers and Structures, vol. 31,
no. 2, pp. 287-292, 1989.

J. P. Beaufait and W. Hoadley, “Analysis of elastic beams on nonlinear
foundations,” Computers and Structures, vol. 12, no. 5, pp. 669-676,
1980.

C. W. Harden and T. C. Hutchinson, “Beam on nonlinear Winkler
foundation modeling of shallow rocking-dominated footings,”
Earthquake Spectra, vol. 25, no. 2, pp. 277-300, 2009.

S. P. Sharma and S. Dasgupta, “The bending problem of axially
constrained beams on nonlinear elastic foundations,” International
Journal of Solids and Structures, vol. 11, pp. 853-889, 1975.

T. M. Wang and L. W. Gagnon, “Vibrations of continuous Timoshenko
beams on Winkler-Pasternak foundations,” Journal of Sound and
Vibration, vol. 59, no. 2, pp. 211-220, 1978.

F. Firat Calim, “Dynamic analysis of beams on viscoelastic foundation,”
European Journal of Mechanics-A/Solids, vol. 28, no. 3, pp. 469-476,
2009.

C. Bridge and N. Willis, “Steel catenary risers results and conclusions
from large-scale simulations of seabed interactions,” Proceedings of the
International Conference on Deep Offshore Technology, New Orleans,
Louisiana, (2002).

C. Bridge, K. Laver, E. Clukey and T. Evans, “Steel catenary riser
touchdown point vertical interaction models,” Proceedings of the
Conference on Offshore Technology, Houston, Texas, 2004.

M. S. Hodder and B. W. Byrne, “3D experiments investigating the
interaction of a model SCR with the seabed,” Applied Ocean Research,
vol. 32, no. 2, pp. 146157, 2010.

K. J. Bathe, “Finite element procedures in engineering analysis,”
Englewood Cliffs, NJ: Prentice-Hall, 1982.

J. N. Reddy, “An introduction to nonlinear finite element analysis,”
Oxford University Press, 2004.

S. A. Hosseini Kordkheili and H. Bahai, “Non-linear finite element
analysis of flexible risers in presence of buoyancy force and seabed
interaction boundary condition,” Archive of Applied Mechanics, vol. 78,
no. 10, pp. 765-774, 2008.

S. A. Hosseini Kordkheili, H. Bahai and M. Mirtaheri, “An updated
Lagrangian finite element formulation for large displacement dynamic
analysis of three-dimensional flexible riser structures,” Ocean
Engineering, vol. 38, no. 5-6, pp. 793-803, 2011.

T. Horibe, “An analysis for large deflection problems of beams on
elastic foundations by boundary integral equation method,” Transaction
of Japan Society of Mechanical Engineers (JSME)-Part A, vol. 53, no.
487, pp. 622-629, 1987.

T. S. Jang, H. S. Baek and J. K. Paik, “A new method for the nonlinear
deflection analysis of an infinite beam resting on a nonlinear elastic
foundation,” International Journal of Non-Linear Mechanics, vol. 46,
no. 1, pp. 339-346, 2011.

T. S. Jang, “A new semi-analytical approach to large deflections of
Bernoulli-Euler-v. Karman beams on a linear elastic foundation:
Nonlinear analysis of infinite beams,” International Journal of
Mechanical Sciences, vol. 66, pp. 22-32,2013.

T. S. Jang, “A general method for analysing moderately large deflections
of a non-uniform beam: an infinite Bernoulli-Euler—von Karman beam
on a nonlinear elastic foundation,” Acta Mechanica, vol. 225, no. 7, pp.
1967-1984, 2014.

A. A. Al- Azzawi, H. Mahdy and O. Sh. Farhan, “Finite element
analysis of deep beams on nonlinear elastic foundations,” Journal of the
Serbian Society for Computational Mechanics, vol. 4, no. 2, pp. 13-42,
2010.

D. M. Al-Talaqany, “Large Deflection Deep Beams on Elastic
Foundations,” M.Sc.Thesis, Faculty of Engineering, Nahrain University
of Baghdad, Iraq, 2007.

A. A. Al- Azzawi and D. M. Theeban, “Large deflection of deep beams
on Elastic Foundations,” Journal of the Serbian Society for
Computational Mechanics, vol. 4 no. 1, pp. 88-101, 2010.

D. V. Griffiths, J. Paiboon, J. Huang, G. A. Fenton, “Numerical analysis
of beams on random elastic foundations,” In: Proceedings of the 9th
international congress on numerical methods in engineering and
scientific applications, CIMENICS, pp. 19-25, 2008.

140



[30]

[31]
[32]

[33]

[34]

[33]

[36]

[37]

International Journal of Earth, Energy and Environmental Sciences
ISSN: 2517-942X
Vol:10, No:2, 2016

S. M. Elachachi, D. Breysse and L. Houy, “Longitudinal variability of
soils and structural response of sewer networks,” Computers and
Geotechnics, vol. 31, no. 8, pp. 625-641, 2004.

E. VanMarcke, “Random fields: Analysis and synthesis,” Cambridge,
MA: MIT Press, 1983.

D. Nedjar, M. Bensafi, S. M. Elachachi, M. Hamane and D. Breysse,
“Buried pipe response under seismic solicitation with soil-pipe
interaction,” In Mestat (Ed.), NUMGE conference Paris: ENPC/ LCPC,
pp. 1047-1053, 2002.

D. Nedjar, M. Hamane, M. Bensafi, S. M. Elachachi and D. Breysse,
“Seismic response analysis of pipes by a probabilistic approach,” Soil
Dynamics and Earthquake Engineering, vol. 27, no. 2, pp. 111-115,
2007.

S. M. Elachachi, D. Breysse and H. Benzeguir, “Soil spatial variability
and structural reliability of buried networks subjected to earthquakes”,
Computational Methods in Applied Sciences, vol. 22, pp. 111-127,
2011.

S. M. Elachachi, D. Breysse and A. Denis, “Effect of soil spatial
variability on reliability of rigid buried pipes,” Computers and
Geotechnics, vol. 43, pp. 61-71, 2012.

N. Kazi Tani, D. Nedjar and M. Hamane, “Non-linear analysis of the
behaviour of buried structures in random media,” European Journal of
Environmental and Civil Engineering, vol. 17, no. 9, pp. 791-801, 2013.

G. A. Fenton and E. H. VanMarcke, “Simulation of random fields via
local average subdivision,” Journal of Engineering Mechanics, vol. 116,
no. 8, pp.733—1749, 1990.

141



