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 
Abstract—In this work we make a bifurcation analysis for a 

single compartment representation of Traub model, one of the most 
important conductance-based models. The analysis focus in two 
principal parameters: current and leakage conductance. Study of 
stable and unstable solutions are explored; also Hop-bifurcation and 
frequency interpretation when current varies is examined. This study 
allows having control of neuron dynamics and neuron response when 
these parameters change. Analysis like this is particularly important 
for several applications such as: tuning parameters in learning 
process, neuron excitability tests, measure bursting properties of the 
neuron, etc. Finally, a hardware implementation results were 
developed to corroborate these results. 
 

Keywords—Traub model, Pinsky-Rinzel model, Hopf 
bifurcation, single-compartment models, Bifurcation analysis, neuron 
modeling. 

I. INTRODUCTION 

HE primary goal of conductance-based models is try to 
incorporate as much cellular detail as is possible in order 

to have realistic neuron models. One of the most important 
features of these models is that they are biophysical 
compatible and hence neuroscientists, biologists, 
psychologists can, at certain level, study the properties and co-
relate directly parameters with their biological counterparts.  

Besides the well know Hodgkin-Huxley (H-H) model; there 
are several conductance-based models which highlight 
different features in the neuron dynamics. One of the most 
used models, which take into account information about 
calcium ion channel Ca2+, is Traub Model [1]; where the 
conductance ݃஼௔ is high-voltage activated type. Calcium 
dynamics is another important element in the chemical and 
electrical behavior in the neuron. This model can reproduce 
some burst patterns that H-H model does not exist [2]. 

The original work of Traub et al. consists in of a 19-
compartment scheme for a CA3 hippocampal pyramidal 
neuron. However compute all these compartments to represent 
a single cell require big computational resources. In order to 
simplify this model, Pinsky and Rizel (P-R) [3] elaborated a 2-
compartment model equivalent to original Traub, maintaining 
the essential ionic currents dynamics and capable of producing 
similar phenomena to the Traub model. The two-compartment 
model includes two parts: a soma-like, which has the Na+ and 
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K+ activated currents; and a distal dendrite-like, where Ca2+ 
activated and Ca2+ dependent of potassium currents are 
considered. 

The present research takes in consideration only the soma-
like part of the model. Since our primary investigation is about 
biophysically compatible neuro-simulators for hardware 
implementations. It is important to keep good performance in 
order to have biological compatibility and reproduce results 
from real nervous systems. 

In addition, it is of particular interest of this research to 
study the neuron dynamics behavior when two parameters 
change: applied current (ܫ௘) and leakage conductance ( ௟݃). 
Applied current is important since we want to have control 
about when neuron fires or produce bursting/periodic spikes. 
This is useful for some kind of experiments such as tuning 
parameters in learning process, neuron excitability tests, 
measure bursting properties of the neuron, etc.[4]-[6]. 

Bifurcations mechanisms involved are involved in the 
generation of action potentials (spikes) by neurons. Hence a 
bifurcation study can determined the neuro-computational 
properties and dynamics of the cells [7], [8]. 

Using common parameter values of Traub model at resting 
state, it produces periodic spikes, even without any current 
applied; then it is fundamental to maintain neuron at 
equilibrium voltage when neuron it is at resting state and 
without compromising the dynamics of the neuron. This can 
be done adjusting the value of leakage conductance. Another 
interesting aspect about leakage conductance, which mainly 
consists of chloride ions, is that it is related with some ion-
channel diseases and can be used in feedback control schemes 
to lead new electrical stimulation systems [5]-[9]. This issue 
will be topic of discussion for future work. 

We intend that our neuro-simulator platform [10] can 
simulate either single or two-compartment (soma+dendrite) 
type of neurons. Here we study the single compartment neuron 
dynamics through bifurcation techniques in order to analyze 
the excitability properties when a particular current is injected 
to the neuron. 

II. MATHEMATICS OF TRAUB MODEL 

Equation (1) represent the soma-like based on the original 
work of Pinsky-Rinzel [3]. Where ܥ௠ is the capacitance for 
the cell membrane (µF/cm2); V represent the membrane 
potential (mV);݃̅௜ and ܧ௜ are the maximal conductance and the 
equilibrium potential of the ionic specie i respectively 
(mS/cm2 and mV); ܫ௘ stands for injected current (µA/cm2); m, 
h and n are the unitless activation/inactivation gating variables 
having the form of the first kinetic formula. These variables 
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depends of the functions α(V) and β(V), which describe the 
transition rates between open and closed states of the 
channels. 

Like other conductance-based models, the gating variables 
for Traub Model has specific representations for α(V) and 
β(V) measured experimentally, Table I shows these values for 
a resting potential of -60 mV. 

 

Vᇱ ൌ ൣെ݃̅ே௔݉ஶ
ଶ ݄ሺܸ െ ே௔ሻܧ െ ݃̅௄ವೃ݊൫ܸ െ ௄ವೃ൯ܧ

െ ݃̅௅ሺܸ െ ௅ሻܧ ൅  ௠ܥ/௘൧ܫ

݉′ ൌ ௠ሺܸሻሺ1ߙ െ݉ሻ െ  ௠ሺܸሻ݉ߚ

n′ ൌ ௡ሺܸሻሺ1ߙ െ ݊ሻ െ  ௡ሺܸሻ݊ߚ

h′ ൌ ௛ሺܸሻሺ1ߙ െ ݄ሻ െ  ௛ሺܸሻ݄ߚ

(1) 

 
TABLE I 

SPECIFIC VALUES OF GATING VARIABLES IN TRAUB MODEL 

Gating variable α(V) β(V) 

m 
െ0.32ሺܸ ൅ 46.9ሻ

exp ቂ
ିሺ௏ାସ଺.ଽሻ

ସ
ቃ െ 1

 
0.28ሺܸ ൅ 19.9ሻ

exp ቂ
ሺ௏ାଵଽ.ଽሻ

ହ
ቃ െ 1

 

h 0.128exp ൤
െሺܸ ൅ 43ሻ

18
൨ 

4

exp ቂ
ିሺ௏ାଶ଴ሻ

ହ
ቃ ൅ 1

 

n 
െ0.016ሺܸ ൅ 24.9ሻ

exp ቂ
ିሺ௏ାଶସ.ଽሻ

ହ
ቃ െ 1

 0.25	exp ൤
െሺܸ ൅ 40ሻ

40
൨

III. DYNAMICS NEURON ANALYSIS AND RESULTS 

The first step to analyze neuron dynamics is finding the 
possible equilibrium points given in (1). An equilibrium point 
is defined as the set (Ve, me, he, ne) where there is no more 
change in the behavior of each variable; i.e. the derivative 
with respect to time is zero. So right parts of (1) are zero, and 
then we have the new set of steady state equations for the 
system: 

 
݃̅ே௔݉ஶ

ଶ ݄ሺܸ െ ே௔ሻܧ ൅ ݃̅௄ವೃ݊൫ܸ െ ௄ವೃ൯ܧ ൌ െ݃̅௅ሺܸ െ  ௅ሻܧ
݉ ൌ ௠ሺܸሻߙ௠ሺܸሻ/ሾߙ ൅  ௠ሺܸሻሿߚ
n ൌ ௡ሺܸሻߙ௡ሺܸሻ/ሾߙ ൅  ௡ሺܸሻሿߚ
h ൌ ௛ሺܸሻߙ௛ሺܸሻ/ሾߙ ൅  ௛ሺܸሻሿߚ

(2) 

 
For the particular equation involving the three ion channel 

currents, and because we are interested in the behavior starting 
with a zero current applied (Ie=0). We can find the equilibrium 
points with a simulation of voltage-clamped technique which 
obey the equation:ܫே௔ ൅ ௄_஽ோܫ ൌ െܫ௅.  

We have found two set of equilibrium points (A and 
B)where these two currents intersect; with this equilibrium 
points, we can find the equilibrium set (Ve, me, he, ne), which 
correspond to the values where the set of in (2) becomes zero. 

It has to be mentioned that point A is not properly an 
intersection point between currents, but it is approximated 
crossing spot and hence equilibrium point; this is due to 
instability in default point for leakage conductance ( ௟݃ ൌ 0.3). 
However when this conductance is slightly shifted, the 
stability is achieved; we will discuss this in Section III.  

In order to analyze the stability for this equilibrium points 
and since the Jacobian matrix J(Xe) at the equilibrium point Xe 
is used in the linearization of original non-linear system; the 
Jacobian matrix is calculated, where fv, fm, fh, and fn have the 
form of the right side in (1). 

 

 

Fig. 1 Relation between the three currents with respect to voltage 
clamped simulation 

 
TABLE II 

EQUILIBRIUM POINTS FOR SINGLE COMPARTMENT TRAUB MODEL 

Equilibrium point Ve me he ne 

A -58.649 0.01902 0.99428 0.00158

B -31.462 0.58412 0.1552 0.16071
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The Eigen-values of equilibrium points A and B are solved 

and interpret next: 
 

Ψ஺ ൌ 		െ10.6314;െ0.0132;	െ0.4818;	െ0.3078 
Ψ஻ ൌ െ3.075	 ൅ 	7.206݅; 	െ3.075 െ 7.206݅; 	1.427;	െ0.291 

 
The equilibrium point A, with its four negative values is 

asymptotically stable node; i.e. membrane potential will 
remain at its rest state unless some excitation pulse generate 
an action potential, then membrane voltage will return to the 
equilibrium state again. According to point B, because the 
presence of positive value it is unstable, moreover, since it has 
a couple of conjugate eigen-values, which makes the 
appearance of Hopf bifurcation, i.e. stable or unstable limit 
cycles [11], [12]. As we now, limit cycles is the graphical 
representation of bursting and periodic spiking for a neuron. 
So, if we want to study the effects when parameters such ܫ௘ or 
݃௟ change, then we need to focus on point B. So equilibrium 
and initial condition in point B is used to start the bifurcation 
analysis using the tool XPPAUT. 
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Fig. 2 Bifurcation diagram for membrane voltage V (mV) when 
applied current I(mA) varies. Red, black, green and blue lines/spots 
indicate: stable fixed points, unstable fixed points, stable periodic 

orbits and unstable orbits respectively 
 

There are three main points it is worth to focus. First, P1 
(V≈-58.64, Ie≈0) is in fact, the equilibrium point A and it is 
also a bifurcation point, if voltage and current becomes more 
negative, the membrane voltage tends to go a specific stable 
fixed point and gets higher (more negative) as current is more 
negative. However, if membrane voltage slightly increases 
(becomes less negative) then it goes to an unstable fixed 
points zone, and it start to oscillate. This is not good, 
especially if we want that neuron stay at its resting value when 
0 mA current is applied, instead of start oscillating. This will 
be fixed in Section IV.  

P2 (V≈-28.6, Ie≈90) is where a Hopf bifurcation appears 
and stable periodic orbits increase in amplitude as current 
tends to zero, i.e. when current starts to increase from zero the 
neuron start to fires periodically with spikes amplitudes near 
of 15 mV, whereas current keeps increasing, the neuron 
maintains firing periodically but with less amplitude and more 
frequency, eventually when current applied reach 90 mA, then 
membrane voltage tends to a fixed stable as we can see the 
right red line after P2. However is the value of 65 mA where 
the membrane voltage output can still consider as action 
potentials, i.e. spikes amplitude is bigger than -20 mV 
threshold.  

 

 

Fig. 3 Frequency diagram of periodic spikes. Current I and frequency 
is given in mA and KHz units respectively 

 
A frequency study is also shown in Fig. 3, where we can 

conclude that for an applied current between 0 and 65 mA, the 
spike frequency response range is [50  341] Hz. 

P3 is a very small region where negative current near zero 
generates sporadic single spikes, which are consider as 
unstable orbits marked as blue spots in Fig. 2. In fact P1 and 

P3 have the same current value, but with different membrane 
voltage steady states. 

 

 

Fig. 4 Bifurcation diagram for membrane voltage V (mV) when 
leakage conductance gL (mS/cm2) varies. Red, black, green and blue 
lines/spots indicate: stable fixed points, unstable fixed points, stable 

periodic orbits and unstable orbits respectively 
 

Regarding leakage conductance parameter, a bifurcation 
diagram is shown in Fig. 4 when applied current is zero. The 
important point to notice is P1, where there is a bifurcation 
point at ݃௟ ൌ 0.4522mS/cm2, values of leakage conductance 
smaller than this value makes the neuron unstable, producing 
action potentials even if the neuron has no stimulus. If this 
kind of model is intended to be used in neural networks with 
learning process, this is not a desired behavior. So it is 
necessary to choose the proper value of leakage conductance 
where we can guarantee the neuron will stay at stable value 
when there is no current applied, this is done by choosing a 
value bigger than 0.4522 mS/cm2, where as we can see in Fig. 
4, the neuron will remain at resting value of 60 mV 
approximately (red line). The equilibrium point A was 
achieved with a leakage conductance of 0.5 mS/cm2. 

In point P2, when ݃௟ ൌ െ5.8 a Hopf bifurcation rises with 
unstable orbits (blue spots); nevertheless it is a mathematical 
bifurcation point, from a biophysical point of view does not 
have relevance due to negative values for leakage 
conductance. 

The complete list of parameters used for this study is: 
݃̅ே௔ ൌ 30 mS/cm2;݃̅௄ ൌ 15 mS/cm2; ݃̅௟ ൌ 0.5 mS/cm2; 
ே௔ܧ ൌ 40 mV; ܧ௞ ൌ െ75 mV; ܧ௟ ൌ െ60 mV; ܥ௠ ൌ 3 
µF/cm2. These values are consistent with the original work in 
[1]-[3]. 

IV. HARDWARE IMPLEMENTATION TEST 

Finally the single compartment Traub model was tested in a 
FPGA device. Following a scheme of state machines, floating-
point arithmetic units and BRAMs for store internal results, a 
soma-like neuroprocessor was developed. This 
implementation is part of the project “Efficient and 
biophysical accurate neuroprocessors”. Because this 
neuroprocessors are implemented in digital programmable 
devices, (1) need to be solved by numerical methods. 
Exponential Euler method offers good tradeoff between 
system stability and computational resources for 
implementation. Because the development of such neuro 
processors is not the principal discussion on this paper, more 
details about this platform can be found in [2]-[10]. 

p1 

p2 

p3 

p1 

p2 
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Several tests were run on this platform and Fig. 5 presents 
the results for three different applied currents. The frequency 
of spikes is consistent with results obtained by current 
bifurcation. And when a current bigger than 90 mA is injected; 
a short transient response occurs and then membrane voltage 
goes to a steady state of 28 mV. 

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 5 Periodic spikes hardware implementation results for different 
applied current. a) 10 mA, b) 65 mA and c) 95 mA 

V. CONCLUSIONS AND FUTURE WORK 

A mathematical analysis for neuron dynamics was 
developed. The Traub model used is one of the most important 
conductance-based models and a single compartment 

representation was analyzed. The leakage conductance value 
was tuned in order the neuron remains at fixed value when it is 
at resting state. This parameter is the best option to change if 
does not want to compromise the dynamic of the original 
model. 

Through bifurcation analysis, it was detected the stable and 
unstable solutions for this model. A Hopf bifurcation was 
discovered at the point I = 90 mA, given to the current range 
[0 90] mA a set of stable periodic orbits with different action 
potentials amplitudes. The frequencies range for this periodic 
orbits are from 50 to 341 Hz. All this information is relevant 
since it is the first analysis done for a single compartment 
Traub model and it is well established quantitative current 
values where we can have knowledge of what kind of 
response from the neuron we can expect; this is particularly 
important if we want to use this neuro processors in a neural 
network and incorporate a learning process; it is necessary to 
know which values of current will make the neuron fires. 

As future work we are planning to make a similar analysis 
for the complete two-compartment Traub model, taking in 
consideration the dendrite calcium ion channel information. 
Also using the same bifurcation analysis found relevant 
information related with ion-channel diseases in order to 
implement neural control models which helps in this particular 
issues. 
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