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Abstract—We present a new framework of the data-reusing (DR)
adaptive algorithms by incorporating a constraint on noise, referred
to as a noise constraint. The motivation behind this work is that the
use of the statistical knowledge of the channel noise can contribute
toward improving the convergence performance of an adaptive filter
in identifying a noisy linear finite impulse response (FIR) channel.
By incorporating the noise constraint into the cost function of the
DR adaptive algorithms, the noise constrained DR (NC-DR) adaptive
algorithms are derived. Experimental results clearly indicate their
superior performance over the conventional DR ones.
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I. INTRODUCTION

HE least mean square (LMS)-type adaptive algorithms

yield a deteriorated convergence performance for
the highly correlated input regressors [1]. Recently, the
data-reusing LMS (DR-LMS) and normalized DR-LMS
(NDR-LMS) and affine projection (AP) algorithms have
drawn attention among researchers desiring to address the
poor convergence issue of the LMS-type adaptive filters
[2]-[5]. Comparing with the LMS-type adaptive algorithms,
the aforementioned algorithms utilize a block error and a block
input regressor for updating the filter weight, accomplishing
faster convergence. Nevertheless, the DR adaptive algorithms
also suffer from a tradeoff between convergence rate and
steady-state misalignment.

When identifying a noisy linear finite impulse response
(FIR) channel, the use of noise statistics can play a
considerable role in improving the convergence behavior of
the adaptive filter [6],[7]. Motivated by this, we make use
of the knowledge of the channel noise, more specifically
the noise power which is either known or estimated, so
as to address a conflicting requirement of fast convergence
and low misalignment of the DR adaptive algorithms. By
imposing a constraint on noise, referred to as a noise
constraint, on the unified cost function of the DR adaptive
algorithms, an augmented Lagrangian is formulated. Solving
the augmented Lagrangian leads to the noise constrained
DR (NC-DR) adaptive algorithms, which yield a variable
step-size feature. Through experiments, we demonstrate that
the proposed NC-DR adaptive algorithms posses superiority
over the conventional DR ones by carrying out the tradeoff
between fast convergence and low misalignment.
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II. DATA-REUSING (DR) ADAPTIVE ALGORITHMS

Consider reference data d(i) that arise from the system
identification model

d(i) = wyw® + (i), (1)

where w° is a column vector for the impulse response of an
unknown system that we wish to estimate, v(¢) accounts for
measurement noise and u; denotes the 1x M row input vector,

w; = [u(i) w(@—1) ---uli — M +1)], )
and u; and v(4) are uncorrelated. For compact manipulation

we also define an input signal matrix and a desired signal
vector as

u;—1 d(l — 1)

Wi K41 d(Z - K+ 1)

Then the error vector is compactly written as
e, = dl — UiWi_l. (3)

In [8], the unified cost function of the DR adaptive
algorithms is given by

J(i) = Ele;1le;] (@))

where II is a positive definite matrix. Taking derivatives of
J(t) with respect to w;_; and replacing the expected value
by its instantaneous value, we obtain the following stochastic
gradient based recursion

w; = wi_1 + pU/ Tle; (5

where g is the step-size parameter. Choosing a different
parameter 11 leads to the distinct DR adaptive algorithms, i.e.,
the DR-LMS, NDR-LMS, and AP algorithms can be obtained
as follows [8]:

DR — LMS : w; W1+ uUi*e,i, 6)
NDR —LMS:w; = w;_1+ uU;D;e,, @)
AP:w; = w; 1 +upUUU) e (8)

respectively, where D; = diag[1/||w;]|?, ..., /|[wi—x+1]/?].
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III. NOISE CONSTRAINED DR (NC-DR) ADAPTIVE
ALGORITHMS

Under the model (1), minimizing the unified cost function
(4) over w gives the optimal weight w = w° and yields

I (i) lw=we = E[viTIvi], ©)

where v; = [v(@) v(i — 1)...v(i — K + 1)]T. In [8],
it is evident that the transient behavior of the weight of
the DR adaptive filter is dependent on the statistics of the
channel noise, suggesting the usefulness of noise in finding
the optimal weight. In addition, it is known that the use
of the statistical information of the channel noise enables
the LMS-type adaptive filter to improve the convergence
performance [6].

Inspired by these, we formulate a constrained optimization
criterion incorporating the knowledge of the channel noise as
follows: Minimizing J (i) subject to J(i) = E[v;IIv,]. An
augmented cost function, using a Lagrange multiplier A, is
given by

J1(6) = J (i) + A (J() — E[viTIv,]) . (10)

The critical values of (10) are w = w° for any A. This
situation may cause convergence problem [6]. To address this,
a term —yA2 (y > 0) is incorporated into (10), resulting in a
new augmented Lagrangian as follows:

Ine(@) = J@) + A (J(i) — E[viTIvy])) —yA% (1)

The uses of the v and vA? in (11) ensure that the unique
critical value of Jnc(i) is (w,A) = (w°,0). In (11), the
augmented Lagrangian (11) is minimized with respect to the
weight w and maximized with respect to A, respectively. By
applying the Robbnis-Munro method [9], the weight and A are
updated as follows:

w; = W;_1 — aVwJne (12a)
Ai = i1+ BVaJne (12b)

where o and (§ are the positive learning parameters. The
gradient terms in (12a)—(12b) are simply derived as

VWJNC = —(1 +’y/\)E[U;‘He,] (133)
Viadne = v (Elejlle;] — E[viIlv;]) — 2y, (13b)
respectively.

Replacing the expected values of (13a)—(13b) by their
instantaneous values, substituting for (12a)-(12b) and
replacing By by [3/2, we obtain the following update
recursions:

W, = W;_1 + oini*Hei, (14a)
ol +7Ai), (14b)

Q5

1
/\i+1 =\ + ﬁ E(efﬂel — E[V:HVJ) — ;| (14¢)

Finally, (14a)—(14c) are referred to as the noise constrained
DR (NC-DR) adaptive algorithm. By choosing 1I, we can get
a new family of the DR adaptive algorithms described in the
following subsections.

A. Noise Constrained Data-reusing LMS (NC-DR-LMS)
Algorithm

In case of II = I, we obtain the NC-DR-LMS algorithm by
deriving
Evivy) = Ko?2, (15)
where o2 = E[v(i)?] is the power of the channel noise.

Substituting (15) into (14c) leads to the NC-DR-LMS
algorithm, being written by

W;_1 +OéiUi*ei (163.)
a1+ 7\ (16b)

W

673

1 -
/\i+1 = )\2+6 5(6:61'—[&05)—)\1' . (16C)

B. Noise Constrained Normalized DR LMS (NC-NDR-LMS)
Algorithm

If Il = D; = diag[l/||w;]|?,...,1/||ui—xy1]|?], we arrive
at
. Ko}
E[Vi Dsz} = MO’%(i)’ (17)

where 02 = E[u(i)?] and it can be computed by
02(i) = 002 (i — 1) + (1 — O)u?(4) (18)

with 0 <6 < 1.
Then, the NC-NDR-LMS algorithm is given by

w; = w1+ U Die; (19a)
a(l+vN) (19b)
1/, Ko?

Aig1 = N+ {5 (ei D;e; — W) - /\q‘} . (19¢)

(€7

C. Noise Constrained Affine Projection (NC-AP) Algorithm

The NC-AP algorithm can be obtained from (14a)—(14c)
in case of Il = (UyU;)~!. Assuming that the diagonal
components of U/U; are much larger than the off-diagonal
components [10], we arrive at

E|(U;U) ™! = B{diag[L/[lwil?, ..., 1/l g 41 P} = mlﬂ

since E[||w;||?] = Mo?2, where 02 = E[u?(i)] which can be

u? (A

estimated as (18). By doing this, we get

K 2
Ty (20)

1
* * —1 ~ ko]
Evi(UU;) ™ vi] = WE[W vi] = M)’

under the realistic assumption that the noise v(¢) is i.i.d. and
statistically independent of the input matrix U; [5].

Then, the resultant NC-AP algorithm is given by
wi = wi_1 + o U (UFUs) ey (21a)
o = a(l+v\) (21b)

1 Ko?
Xig1 =N ~ (ef(UUs) e — L) =N | L@l
= sl (serm e g ) A @
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Fig. 1 MSD curves of DR-LMS and NC-DR-LMS [K = 4; M = 16]

IV. EXPERIMENTAL RESULTS

We illustrate the performance of the NC-DR algorithms by
carrying out computer simulations in a channel identification
scenario. The unknown channel H(z) has 16 taps and is
randomly generated. The adaptive filter and the unknown
channel are assumed to have the same number of taps. The
input signal is obtained by filtering a white, zero-mean,
Gaussian random sequence through a following second-order
system

140527 +0.81z2
© 1-0.59271 + 04272

G(2) (22)
This results in a highly correlated Gaussian signal of which
the eigenvalue spread is about 105. The signal-to-noise ratio
(SNR) is computed by 10log;o(E[y(i)%]/E[v(i)?]), where
y(i) = u;w°. The measurement noise v(z) is added to y(7)
such that SNR = 30dB. In this study, it is assumed that the
power of the channel noise, o2, is known a priori since it can
be easily estimated in practical applications [11]. The mean
square deviation (MSD), E||w® —w||?, is taken and averaged
over 100 independent trials. In the NC-NDR-LMS and NC-AP
algorithms, 6 = 0.99 is used.

Fig. 1 shows the MSD curves of the DR-LMS and
NC-DR-LMS algorithms for K = 4. Here, we choose a =
0.004, B =2 x 1074, and = 500 for the NC-DR-LMS and
1 = 0.01, 0.005, and 0.003 for the DR-LMS, respectively.
As can be seen, the NC-DR-LMS is superior to the DR-LMS
in terms of both the convergence rate and the misalignment.
In Fig. 2(a), the transient behavior of the step-size, o, of the
NC-DR is depicted. The step-size, «;, has large value at initial
period and becomes small, achieving fast convergence as well
as low misalignment. Fig. 2(b) exhibits the evolution of \;
which increases rapidly and then converges to zero.

Fig. 3 exhibits the MSD curves of the NDR-LMS and
NC-NDR-LMS for K = 4. We use a = 0.05, § =
1.5 x 1073, and v = 5000 for the NC-NDR-LMS and
p = 0.5, 0.2, and 0.07 for the NDR-LMS, respectively. We
can see that the NC-NDR-LMS possesses both rapid and
accurate convergency. Next, Figs. 4(a) and 4(b) illustrate the
time evolution curves of «; and \; of the NC-NDR-LMS,
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(a) Time evolution of step-size, a;, for NC-DR-LMS

0.01

0.008

0.006 -

0.004 |-

0.002

0 5000 10000 15000
Iteration number

(b) Time evolution of \; for NC-DR-LMS

Fig. 2 Behavior of parameters for NC-DR-LMS
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Fig. 3 MSD curves of NDR-LMS and NC-NDR-LMS [K = 4; M = 16]

respectively. Similar results with Figs. 2(a) and 2(b) are
observed in Figs. 4(a) and 4(b).

In Fig. 5, the MSD curves of the NC-AP and other
conventional AP algorithms for K = 4 are depicted. For
comparison purpose, we apply a recently developed variable
step-size AP (VSS-AP) algorithm [5], which yields p(i) =
Lmax ﬁﬁ%, where C' =~ K/SNR. The parameters, C' =
5x107° and pmax = 1.0, are used for the VSS-AP. We choose
©=0.3, 0.1, and 0.03 for the AP and o = 0.025, 8 = 1073,
and v = 5000 for the NC-AP. In the figurc, the NC-AP
addresses the trade-off between the convergence rate and the
misalignment in the AP and outperforms the VSS-AP. Fig. 6(a)
illustrates the time evolutions of step-sizes for the NC-APA
and VSS-AP algorithms, revealing the dynamic behavior of
the NC-AP. Fig. 6(b) shows the corresponding behavior of \;
of the NC-AP.

V. CONCLUSION

We have presented a noise constrained framework of
the DR adaptive algorithms by incorporating the statistical
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(a) Time evolution of step-size, o;, for NC-NDR-LMS
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Fig. 5 MSD curves of AP, VSS-AP, and NC-AP [K = 4; M = 16]
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information of the channel noise into adaptation. Solving
a augmented Lagrangian with a noise constraint leads to a
time-varying step-size feature in the DR adaptive algorithms,
thus providing a compromise between fast convergence and
low misalignment. Experiment results have shown that the
proposed DR adaptive algorithms performs better than the
conventional DR counterparts.
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