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 
Abstract—The effectiveness of microchannels in enhancing heat 

transfer has been demonstrated in the semiconductor industry. In 
order to tap the microscale heat transfer effects into macro 
geometries, overcoming the cost and technological constraints, 
microscale passages were created in macro geometries machined 
using conventional fabrication methods. A cylindrical insert was 
placed within a pipe, and geometrical profiles were created on the 
outer surface of the insert to enhance heat transfer under steady-state 
single-phase liquid flow conditions. However, while heat transfer 
coefficient values of above 10 kW/m2·K were achieved, the heat 
transfer enhancement was accompanied by undesirable pressure drop 
increment. Therefore, this study aims to address the high pressure 
drop issue using Constructal theory, a universal design law for both 
animate and inanimate systems.  

Two designs based on Constructal theory were developed to study 
the effectiveness of Constructal features in reducing the pressure drop 
increment as compared to parallel channels, which are commonly 
found in microchannel fabrication. The hydrodynamic and heat 
transfer performance for the Tree insert and Constructal fin (Cfin) 
insert were studied using experimental methods, and the underlying 
mechanisms were substantiated by numerical results. In technical 
terms, the objective is to achieve at least comparable increment in 
both heat transfer coefficient and pressure drop, if not higher 
increment in the former parameter.  

Results show that the Tree insert improved the heat transfer 
performance by more than 16 percent at low flow rates, as compared 
to the Tree-parallel insert. However, the heat transfer enhancement 
reduced to less than 5 percent at high Reynolds numbers. On the 
other hand, the pressure drop increment stayed almost constant at 20 
percent. This suggests that the Tree insert has better heat transfer 
performance in the low Reynolds number region. More importantly, 
the Cfin insert displayed improved heat transfer performance along 
with favourable hydrodynamic performance, as compared to Cfin-
parallel insert, at all flow rates in this study. At 2 L/min, the 
enhancement of heat transfer was more than 30 percent, with 20 
percent pressure drop increment, as compared to Cfin-parallel insert. 
Furthermore, comparable increment in both heat transfer coefficient 
and pressure drop was observed at 8 L/min. In other words, the Cfin 
insert successfully achieved the objective of this study.  

Analysis of the results suggests that bifurcation of flows is 
effective in reducing the increment in pressure drop relative to heat 
transfer enhancement. Optimising the geometries of the Constructal 
fins is therefore the potential future study in achieving a bigger stride 
in energy efficiency at much lower costs. 
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I. INTRODUCTION 

HE miniaturisation and enhanced performance of 
electronic devices call for more effective methods to 

remove the heat produced, ensuring the optimal performance 
and material integrity of the devices. In order to cater for the 
spiralling demand in terms of heat transfer, Tuckerman and 
Pease [1] introduced micro-channel heat sinks in 1981. Their 
work has spawned numerous studies in microscale heat sinks 
as reviewed by [2]. Reference [3] reported that microscale 
heat sink has a heat dissipation capacity of 1000 W/cm2 at a 
maximum surface temperature of 120˚C. The milestone 
achieved by microscale heat sinks has motivated the 
continuous studies on this subject matter, and it is still panning 
out in an encouraging manner hitherto. 

Although microscale level heat transfer has depicted great 
potential in microelectronic devices, its presence in macro 
geometries is uncommon, attributable to both technological 
and cost constraints. In order to tap on the augmented 
microscale heat transfer in macro geometries, [4] proposed the 
implementation of microscale heat transfer in macro 
geometries by using conventional methods, having a 
competitive advantage in terms of manufacturability and costs. 
Furthermore, this nascent technology achieved a heat transfer 
coefficient exceeding 10 kW/m2·K which is not common in 
macro geometries. The study placed an insert concentrically 
into a circular channel to simulate the microscale heat transfer, 
having nominal gap size of 1000 µm to 300 µm. The study 
yielded convincing results on the feasibility to tap the 
augmentation of heat transfer in microchannels into macro 
geometries with sevenfold heat transfer coefficient 
enhancement, corroborated by both numerical and 
experimental investigations.  

A number of studies [5], [6] were performed to improve the 
heat transfer in microchannels by introducing geometrical 
features. Fins and wavy surfaces were introduced to beef up 
the thermal performance of microchannels. A study [7] 
showed that geometrical features pumped up the heat transfer 
coefficient by 100 times in comparison to the plain ones, while 
the pumping power was only increased by four times. 
Motivated by the positive results achieved by enhanced heat 
transfer in microchannels, Goh et al. [8] configured several 
surface features in the microscale heat transfer region in macro 
geometries. Both numerical and experimental approaches had 
been attempted to examine the effect of the surface profile on 
heat transfer and pressure drop. Although the heat transfer had 
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The hydraulic diameter, Dh was evaluated using hydraulic 

diameter for annular channels and the nominal diameter of the 
insert was taken as the inner diameter. 
 
 

h o iD D D    (7) 

E. Experimental Conditions 

All the four inserts were tested under different flow rates 
with the same amount of heat supply. 

TABLE III summarises the operating conditions. 
 

TABLE III 
OPERATING CONDITIONS FOR EACH EXPERIMENTAL RUN 

Experiment run Flow rate (L/min) Heat supply (W) 

1 2.00 1000 

2 3.00 1000 

3 4.00 1000 

4 5.00 1000 

5 6.00 1000 

6 7.00 1000 

7 7.50 1000 

F. Uncertainty Range  

The maximum uncertainty values for heat transfer 
coefficient, Nusselt number, Reynolds number and pressure 
drop across test module were estimated in percentage and 
tabulated in Table IV. These values were expressed as error 
bars for the result analysis.  

 
TABLE IV 

MAXIMUM UNCERTAINTY VALUES 

Parameter  Maximum uncertainty (%) 

Heat transfer coefficient  7.6 

Nusselt number  7.7 

Reynolds number  0.5 

Pressure drop across test module 10.2 

III. COMPUTATIONAL METHOD 

Computational approach was used to back up the 
experimental results while providing insights of the fluid flow, 
visualizing the fluid flow from velocity and streamlines from 
the post processing of results. In this project, 3D model was 
employed due to the non-symmetrical surface profile on the 
insert and solved using the commercially available software, 
ANSYS CFX. 

A. Governing Equations and Boundary Conditions 

In this project, the steady-state conjugate heat transfer 
problem was employed to account for the thermal heat 
conduction in the solid regions and convection in the fluid 
regions. The governing equations [15] which include 
continuity, momentum and thermal energy equations were 
solved numerically, as listed in (8)-(11).  

Continuity equation for the fluid domain:  
  

  0f fU                            (8) 

 
Momentum equation for the fluid domain:  

  

  ,f f f M fU U P S                     (9) 

 
where the stress tensor   is defined as:  

 

  2

3

T
U U U           

  

 
Thermal energy equation for the fluid domain:  

  

   , ,f f e f f f E fU h k T S                     (10) 

 
Thermal energy equation for the solid domain:  

  

   , ,s s e s s s E sU h k T S                        (11) 

 
The equations were solved using the boundary conditions as 

presented. The boundary conditions at the various locations 
are as follows:  
a. Flow inlet: The flow at inlet was assumed a uniform 

velocity with a volumetric flow rate of 4 L/min at a mean 
temperature of 28 ̊C. 

b. Flow outlet: The atmospheric pressure which is 101 kPa 
was assumed.  

c. Heat source: The heating coils were modelled as uniform 
volumetric heating with heat supply of 1000 W.  

d. Solid-solid and solid-fluid interfaces: The temperature 
and heat flux were treated to be continuous at the solid 
walls and the solid-liquid contact surfaces.  

e. Outermost surfaces: The heat loss from the assembly was 
assumed to be happening at outermost surfaces of mica 
insulation, PEEK pipes and insert holders. The 
surrounding temperature was set at 28°C, using a heat 
transfer coefficient of 8 W/m2·K, based on the 
approximation from [4].  

f. The International Association for Properties of Water and 
Steam (IAPWS) standards was used to account for the 
thermophysical variation of the water. The solid materials 
include copper, stainless steel, mica and polyether ether 
ketone were assumed constant solid properties at 28°C.  

IV. RESULTS AND DISCUSSION 

A. Tree Series Insert  

Fig. 11 shows the variation of heat transfer coefficients for 
Tree series with flow rate. It can be seen from the graph that 
the heat transfer coefficient for all the inserts increases with 
flow rate. The Plain insert achieves a heat transfer coefficient 
of 10 kW/m2·K at 2 L/min flow rate, achieving the heat 
removal capability of a microchannel. The Tree insert results 
in higher heat removal capability as compared to the other two 
inserts, particularly at low flow rate. The improvement at 
higher flow rates is insignificant as compared to the Tree-
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