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Abstract—The Hall Coefficient (HC) and the Magnetoresistance
(MR) have been studied in two-dimensional systems. The HC and the
MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC
electric field and magnetic field in the presence of a Strong
Electromagnetic Wave (EMW) characterized by electric field are
studied in this work. Using the quantum kinetic equation for electrons
interacting with optical phonons, we obtain the analytic expressions
for the HC and the MR with a dependence on magnetic field, EMW
frequency, temperatures of systems and the length characteristic
parameters of RQW. These expressions are different from those
obtained for bulk semiconductors and cylindrical quantum wires. The
analytical results are applied to GaAs/GaAs/Al. For this material, MR
depends on the ratio of the EMW frequency to the cyclotron
frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when
this ratio increases, it tends towards a saturation value. The HC can
take negative or positive values. Each curve has one maximum and
one minimum. When magnetic field increases, the HC is negative,
achieves a minimum value and then increases suddenly to a
maximum with a positive value. This phenomenon differs from the
one observed in cylindrical quantum wire, which does not have
maximum and minimum values.

Keywords—Hall ~ coefficient, rectangular quantum wires,
electron-optical phonon interaction, quantum kinetic equation.

I. INTRODUCTION

N the past few years there have been many exciting

development in the study of the Hall Effect in two
dimensional systems (2D). The Hall Effect in bulk
semiconductor in the presence of an EMW has been studied in
much detail [1]-[5], two of which odd magnetophotoresistance
effect have been observed [1], [2]. These two works only
considered the case when the EMW was absent. However, the
magnetoresistance was derived in the presence of a strong
EMW for two cases of the magnetic field vector and the
electric field vector of the EMW: perpendicular [3], and
parallel [4]. The quantum kinetic equation was used to
calculate the nonlinear absorption coefficients of an intense
EMW in quantum wells [6], [7]. The authors of [8] showed the
influence of a strong electromagnetic wave on the Hall
coefficient in Doped Semiconductor Superlattices with an in-
plane magnetic field. Dependence of the Hall Coefficient on
Doping Concentration in Doped Semiconductor Superlattices
with a Perpendicular Magnetic Field under the Influence of a
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Laser Radiation has been studied in [19]. The HC in quantum
wires has been studied in many aspects. However, most of the
previous works only considered the case when the EMW was absent.

The Hall Effect in one-dimensional systems under the
influence of EMW for case that the absence has been studied
in [9]-[18]. The one- dimensional Hall effect can be observed
noninvasively, is quantized, and is not quenched at low
magnetic fields [9]. Electrical transport is considered along a
quantum wire in the presence of a perpendicular magnetic
field at very low temperatures [10]. Theory of the Hall effect
in quantum wires: Effects of scattering have been considered
carefully [11]-[13], [17]. Comparing conductance quantization
in quantum wires and quantum Hall systems are studied [15].
A quantum Hall effect was calculated without Landau levels
in a quasi-one-dimensional system [14], [18]. Based on the
quantum kinetic equation for electrons, we theoretically study
the influence of EMW on the Hall effect in a cylindrical
quantum wire with infinitely high potential [20]. The
dependence of the HC under EMW in quantum wires with
different directions of external fields still remains open for
investigation, especially by analytical and computational methods.

In this work, we study Hall Effect in a RQW with infinitely
high potential and in the presence of a laser radiation,
subjected to a crossed dc electric field and magnetic field in
the presence of a strong EMW characterized by electric field.
Our main tool is the quantum kinetic equation for distribution
function of electrons interacting with optical phonons. Our
goal is to make a comparison between our calculation and
other experiments and theories. In cylindrical quantum wire,
the HC also depends on magnetic field, but the dependence
does not have a maximum and a minimum as in RQW.

This paper is organized as follows. In the next section, we
describe the simple model of a RQW and present briefly the
basic formulas for the calculation. Numerical results and
discussion are given in Section IV. Finally, remarks and
conclusions are show briefly in Section V.

II. HAMILTONIAN OF ELECTRON — PHONON SYSTEM IN A
RECTANGULAR QUANTUM WIRE WITH INFINITELY HIGH
POTENTIAL IN THE PRESENCE OF A LASER RADIATION

We consider a RQW with the sire of three axes L,L L

x> =y =z 0
respectively. It is assumed that the dimension z is quantized
(electron can move freely in this direction), while electron
detention is enforced in the remaining two dimensions (x and
y). The effective mass of the electron is denoted as m. The
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RQW is subjected to a crossed dc electric field € =(0,0,e) and
magnetic field B=(B,0,00 in the presence of a strong EMW
characterized by electric field E=(0,0,E,sin@t). Under these

conditions, the wave function and energy spectrum can be
written as:

nzx | | 2 | 0<ys<L,
e o R e
Yy

and v, gxy.2)=0 if else.

nk? ot (n? 1 1 (eEY
k)= —+ —| =+ + N +f -— .
£ () 2m 2m [LZX Lz) e ) 2m’ [a)]

c

The Hamiltonian for electron - phonon interacting system in
external field can be written as:

H=Zsy(k Am)ayk < Za)qbgqur
7.k a

M
+ Z Cq \M(q)\ L kg (Pg + b2 q)+2¢7(Q)ayk+q R
7.7k.d
where a;lz and a (bg and bq) are the creation and

annihilation operators of electron (optical phonon); k is the
electron wave momentum ; § is the phonon wave vector; op

are optical phonon frequency; y and ' are the quantum
numbers (n,/) and (n’,¢") of electron. N, N’ are the Landau
level (N =0,1,2,...).

The electron form factor | (g) can be written as:

322 QL) (1= (=D cos(a,L,))
2
[(qXLX ) 272 (L)’ (02 40+ 2t (n? - n'z)z}

I;/,}/'(q) =

3224 (A L) (1= (=)' cos(ay L))

{(quy)4 -7 (quy)2 2+ + 742 —I'Z)Z]2

X

= )5 A(t)= é Eocos(t) is the potential

vector, depending on the external field. In that formula
V,p,E,0s, 70, 2o are the volume, the density, the deformation

potential, the sound velocity, the static dielectric constant, and
the high frequency dielectric constant, respectively.
¢ (q) is the potential undirected:

¢(G) = (27i)’ (6E + o [q, h]) 5(Q)

Quantum kinetic equation in units of 7 =1 is:

i ayt’E - <|:a;,lza7,E’H ]>t @)

where n, = <a qa, E> is the particle number operator.

II. QUANTUM KINETIC EQUATION FOR ELECTRONS IN A
RECTANGULAR QUANTUM WIRES WITH INFINITELY HIGH
POTENTIAL

By using Hamiltonian equation (1) for electron - phonon
interacting system in a RQW with infinitely high potential,
and quantum kinetic equations (2), we obtain quantum kinetic
equations in which the equation for optical phonon can be
written as:

e
“kn . —e .
ue,p) %

:’%E"( a;}"’“ e >+ = Jcaf]n, @f N
2 5 3
s 7ﬁff}[[l’lﬁ}5(%a P I LRI I

+% S ( Ekg Gk _Q)} + [ﬁ;».k;q N }[{1 _%]5 ( Eig it a)o) +
/12 ( 2

4QZ —&,+0, Q) Eé‘(s, —& .+, +Q)}}5{s—sy‘k)

7k-a Tk

r(ay ¢) is the recovery time of the electron momentum; kg is

Boltzman constant. Equation (3) can be rewritten as:

R ron
im{h AR|=Q, +S,, 4)
where:
— e —
R, = ;k_;knﬂﬁ(a - sy»E); &)
. e k. . 5I’1N2 - .
Q. :—E% F X de—e ;) ; F=eE; (6)

Sa= X Jaafllaf e
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%é(%’ kg T %Q)} i ”,,k}ﬁlé}(@ﬁ i)t
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O

Solving (5) gives:
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. :H;iziiz(g){(@(g”5(5))_mcf(g)([ﬁ,d(g)]+[ﬁ,§(z)])+(8)
+0;7(2)(Qe) + S(o).R)h}.
We have a full current density:

j=[Ryde. ©)

0

From quantum kinetic equations, after several operator
calculations, we have the link between the current density j,

and the Hall conductivity o :

ji = L(Q)+L(S)=0,E; (10
_L@)+LG)
- S an
LX) :IH—Z()L)T {)Z—a)cz'm[ﬁ/\)Z}+wfr(2£)(ﬁ,>z)ﬁ}- (12)

c (&)

X is Q, or S, . From electron distribution:

on(©)
= _no 5 7.k Bleg - 1
nr-=n --kye, r) ;n° F PB=—
7.k 7.k 248y K ag}/ ok s kgT

After several operator calculations, we have:
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where ¢6; is the

Kronecker delta; & being the

antisymmetrical Levi — Civita tensor; the Latin h hh; stand

for the components X, y, z of the Cartesian coordinate system;
The HC is determined by [7]:

1 o

Ry =-———22
" Bol+ol (14)

where: o,, and o, are given by (13).
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e 1s the Fermi level. 7 is the momentum relaxation time;

P
B,=B,+Q, B,=B.-Q, ,,y~(Q)| dq,

I,.(G)is The electron form factor; k; is Boltzmann constant;

T is temperature. K;(x) are modified Bessel functions.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present detailed numerical calculations
about the dependence of the HC on the frequency of EMW,
the magnetic fields and length of the RQW GaAs/GaAsAl

The parameters used for the computation are as follows [10]-[14]:
-9

2,=109,7,=129,5, = ;z—ﬂ,m =0.067m, £, = 50meV, i, = 36.25meV,

Q=3x10"s",n=1Ln"=11=L1"=1,7 =10"s, p = 5320kgm .

Fig. 1 shows the dependence of the HC on frequency EMW
at different values of the magnetic field: length quantum wires
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L =90.10"m,
L, :8.1079m,Ly =7.10"m,B =4T,B =4.4T,B=4.6T.

The HC can be seen to oscillate slightly with the change of
EMW frequency in the small region. When the frequency
increased continuously, the HC saturates. This behavior is
different from the case of the in-plane magnetic field with
optical phonon interaction in doped semiconductor
superlattices [8]. In doped semiconductor superlattices, the HC
can be seen to increase strongly with increasing EMW
frequency for the region of small value and reaches saturation
as the EMW frequency continues to increase. In rectangular
quantum wire, as the frequency rises, the HC increase before
reaching a peak at certain frequency after which it falls
sharply. And if the EMW frequency keeps increasing, the HC
will remain constant. At these values from different the
magnetic fields, different shape figures. There is no difference
between the maximum values of the HC. It seems that the
main resonant peaks, as in the case of the absence of the
EMW, is due to the contribution of a photon absorption /
emission process that satisfies the condition 7w, = haw, £ Q.

In this case, the HC has both negative and positive values. As
frequency EMW increases, the HC is positive, reaches the
maximum value and then decreases suddenly to a minimum
with a negative value. That's the difference for HC in 2D
(quantum wells, Doped semiconductor superlattices [6]-[8])
systems only positive values.
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Fig. 1 The dependence of the HC on frequency EMW at different
values of the magnetic field

Fig. 2 shows dependencies of the MR on the ratio Q/w, at

B =6T for different values of E,. The MR is shown as a
function of Q/ @, at a fix @,. When Q/ @, increases, the MR

has saturation value. We can see very clearly the minima are
at Q/w,=5/4,6/4,7/4 when E, =4.10°V /m,2.10°V /m,10°V /m,
respectively.

Fig. 3 (a) shows the dependence of the HC on the magnetic
field B of the system when the temperature changes
T =250K , T = 200K, T = 250K; The graph shows the HC is
negative or positive. When magnetic field increases, the

absolute value of the HC increases. This character may
explain similar [10]-[13]. The HC seems to decrease with
increasing the magnetic field and reach saturation at large
magnetic field (>4T ). However, for the small magnetic field
the HC shows an oscillation in the range of small magnetic
field. The oscillation disappears when magnetic field becomes
much larger. This behavior is different to the case of in two
dimensional electron system [6]-[8], [19] and in cylindrical
quantum wire [20].
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Fig. 2 Dependencies of the MR on the ratio O/, at B =6T for
different values of Eo

Survey dependence of the HC on the length quantum wires
of the system when the temperature changes. The parameters
used for the computation are ([10]-[14]): T = 100K; T =1500K
T = 200K, the magnetic field B = 2T, Ly = 8.10°m,
Ly=7.10"m.

Fig. 3 (b) shows the HC for case that the absence of an
EMW is similar in comparison in [12]. The HC is negative or
positive. When magnetic field increases, the HC has saturation value.

Fig. 4 shows the dependence of the HC on wire size L,,L,

RQW. The HC nonlinear dependent on size limits Ly, Ly of

RQW. The value of the HC increases as the reduced size of
the wire, to a value determined, the HC reaches the maximum
value and then decrease as the size of wire continues to
decline. However, the HC in RQW get both negative values.
Fig. 5 shows the dependence of MR on a magnetic field B
at different values of temperatures. Each curve has one
maximum and one minimum. When magnetic field increases
the MR is positive and reaches the maximum value then
decreases suddenly to a minimum with a negative value. This
behavior is different to the case of two-dimensional electron
system (see [6], [19] and references there in). Surprisingly, the
value of HC at the maximum is much smaller at the minimum.
Fig. 6 shows the dependence of the HC on the DC electric
field at different value temperatures. From this figure, we can
see that the dependence of the HC on the cyclotron energy is
nonlinear. The HC parabolically decreases with increasing
cyclotron energy and strongly depends on the temperature so

90



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:3, 2016

that as the temperature increases, evidently the HC decreases.
This confirms once again that the HC is quite sensitive to the
change in the temperature.
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Fig. 3 (a) The dependence of the HC on a magnetic field B at
different values of temperatures
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Fig. 3 (b) The dependence of the HC on a magnetic field B at values
E, =0
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Fig. 4 The dependence of the HC on the wire size of RQW Ly and Ly
at different values of temperatures

Fig. 7 shows dependence of the conductivity on the
cyclotron energy shows that: each curve has one maximum
and one minimum as the cyclotron energy increases. The
Conductivity is positive, reaches the maximum value, and then
decreases suddenly to a minimum with a negative value.
When the cyclotron energy is increases further, the
conductivity increases continuously (with negative values) and
reaches saturation at high the cyclotron energy. When g, =0

the cyclotron energy increases, the conductivity reaches
saturation. When the cyclotron energy increases further, the
conductivity increases strongly. This posture graph is similar
to the case absence EMW in quantum wires [16].

016

T T
—T =1 50K

L
1 1.8 2 2.6 3 35 4 4.6 5 5.5 L]
B{T)

Fig. 5 The dependence of MR on a magnetic field B at different
values of temperatures

V.CONCLUSION

Based on the quantum kinetic equation for electrons, we
theoretically study the influence of a Strong EMW on the HC
in a RQW with infinitely high potential. The RQW is
subjected to a crossed DC electric field E=(0,0,E) and
magnetic field B =(B,0,0) in the presence of a strong EMW
characterized by electric field E=(0,0,E,sinc%t) (Where g, and

Q are amplitude and frequency of EMW, respectively). We
obtain the expressions of HC [refer to (14)]. The result showed
that the dependence of the HC and MR in RQW with infinitely
high potential on the parameters of nonlinear systems and
differences in comparison with the semiconductor and two-
dimensional systems. The dependence of HC and MR on
external variables such as temperature wire structure,
intensity, and frequency of the EMW does not change in terms
of quantitative versus cylindrical quantum wires. However
there is a big difference compared with the cylindrical
quantum wires in the dependence of HC in terms of the size
and the change of size of the wire and quantitative values of
this proves that the shape and size of quantum wires have a
significant effect on the HC and MR.

The analytical results are numerically evaluated and plotted
for a specific RQW GaAs/AlGaAs, which shows clearly the
dependence of HC on the magnetic field. If the magnetic field
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is small, the HC has saturation value. This behavior is similar
to the results obtained at low temperatures in some one
dimensional electron systems. When the magnetic field
continues to increase, the HC will decrease. The dependence
of HC with the frequency of EMW: Initially, as the frequency
rises, the HC increase before reaching a peak at certain frequency.
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Fig. 6 The dependence of the Hall coefficient on the DC electric field
at different value temperatures
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Fig. 7 The dependence of the Conductivity on the Cyclotron energy

Especially, when E,=0, the graph and analytical

expressions similar of [12], [13] with a dependence on B,q,
temperatures T of systems and the wire size L,,L, RQW. The

dependence of MR in magnetic field to show appropriate
qualitative terms with the experimental observations and
theoretical calculations as well as one- dimensional systems
have been studied in [14], [18]. When magnetic field increases
the HC is positive and reaches the maximum value before
decreases suddenly to a minimum with a negative value. As
magnetic field increases, the HC reaches saturation. This
behavior is different to case of two-dimensional electron
system [8] and in cylindrical quantum wire. Surprisingly, the
value of HC at the maxima is much smaller and at the minima.
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