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 
Abstract—This paper presents the heat and mass driven natural 

convection succession in a Darcy thermally stratified porous medium 
that embeds a vertical semi-infinite impermeable wall of constant 
heat flux and concentration. The scale analysis of the system 
determines the two possible maps of the heat and mass driven natural 
convection sequence along the wall as a function of the process 
parameters. These results are verified using the finite differences 
method applied to the conservation equations. 
 

Keywords—Finite difference method, natural convection, porous 
medium, scale analysis, thermal stratification.  

I. INTRODUCTION 

HE natural convection triggered by a vertical semi-infinite 
impermeable wall embedded in a porous medium was 

intensively analyzed by scientific researchers in the last 
decades [1]-[22]. Due to the wide variety of its practical 
applications, different cases were considered, analyzed, and 
developed: the wall of constant [1]-[3] or variable [4], [5] 
temperature, constant [1] or variable [6] heat flux, constant 
[7]-[13] or variable concentration, constant concentration and 
variable heat flux [14], [15], variable heat and mass flux [16]; 
the non-Darcy porous medium [6], [17]; the dispersion effects 
analysis [7], [18]; the non-Newtonian fluid saturated porous 
medium [1], [16], [18]; the consideration of the Soret and the 
Dufour effects [15], [17]; the thermally [2]-[4], [8], [19]-[21] 
or the double stratified environment [22], etc. These analyses 
establish the heat and/or the mass transfer at the wall as well 
as the temperature, the concentration and the  velocity fields in 
the boundary layer by using various methods: the scale 
analysis [1] ,[7], [10], [13], the similarity [3], [7], [10], [12]-
[16], [18], [19] or the non-similarity [4], [5] techniques, the 
finite differences method [4], [8], [9], [11], [13], [15], the 
spline collocation method [2], [16], the fourth-order Runge-
Kutta integration method [5], [10], [14], [17]-[19], etc. In this 
scientific environment, this paper establishes the succession of 
the heat and mass driven natural convection regimes that attain 
the equilibrium state along a vertical impermeable wall of 
constant heat flux and concentration, a wall that is embedded 
in a Darcy thermally stratified porous medium. While the 
scale analysis of the system reveals the order of magnitude of 
the boundary layers variables as well as the two possible 
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natural convection regime sequences, the finite differences 
method is used to verify these results.  

II. MATHEMATICAL FORMULATION 

A vertical semi-infinite impermeable wall embedded in a 
Darcy fluid- saturated porous medium is presented by Fig. 1 
(a). The wall releases a uniform constant heat flux (qw) and the 
concentration of a certain constituent is constant at the wall 
(Cw). The origin of the coordinate system is fixed at the 
leading edge of the wall, x and y being the vertical and 
horizontal coordinates, respectively. At a distance sufficiently 
far from the wall, y , the environment temperature varies 

linearly with the vertical coordinate: xsTT T0,x,   , where 

sT is the dimensional thermal stratification coefficient: 
dx/dTs x,T  . The height of the computational domain is h. 

All the properties are constant except for the fluid density,  , 

that obeys the Boussinesq approximation: 
    0,C0,T0 CCTT1    , where 0  is the 

reference density, while T and C are the thermal and 
concentration expansion coefficient, respectively. 

The governing equations of the system, after the elimination 
of the pressure terms, are: 
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In (3) and (4), the following notations were used: u and v 

are the dimensional velocity components on the x and y 
directions, T–the dimensional temperature, C–the dimensional 
concentration, t–the dimensional time, g–the gravitational 
acceleration, K–the porous medium permeability, –the 
dynamic viscosity, –the thermal diffusivity, D–the diffusion 
coefficient of the species. 
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Fig. 1 (a) The vertical impermeable wall and the associated 
coordinate system; (b) the dimensionless domain of the problem 
 
The following boundary conditions apply to (1)-(4): 
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,  wCC   at 0y  ;                       (5a) 

 

0v  , x,TT  ,   CC  as y ;                                  (5b) 

 

0v  , x,TT   ,  CC  at 0x  ;                                      (5c) 
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where k is the thermal conductivity of the porous medium.  

The following non-dimensional variables of the Cartesian 
coordinates, temperature, and concentration, time, and 
velocity components are defined: 
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where L is an arbitrary characteristic length [23]. Fig. 1 (b) 
presents the dimensionless domain: HY  .  

The governing equations in non-dimensional form: 
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and the dimensionless boundary conditions: 
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,  1  at 0Y  ;                                    (11a) 

 
0V  , 0  as Y ;                                            (11b) 

 
0V  , 0   at 0X  ;                                              (11c) 
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are determined by replacing (6) in (1)–(5). The following 
parameters occur in (7)–(11):    /Lk/qKgRa 2

wt , the 

Darcy−modified Rayleigh number based on heat flux, 
    k/Lq/CCN wt0,wc   , the buoyancy ratio, 

  k/Lq/sS wTT  , the dimensionless thermal stratification 

parameter, and  D/Le  , the Lewis number.  

The scale analysis [24] of the dimensionless governing 
equations, (7)-(10), is realized in the following section, 
Section III. Section IV presents the numerical model used to 
solve the dimensionless governing equations and to verify the 
results established in Section III of this paper. 

III. SCALE ANALYSIS 

The initial moments, when the equilibrium state is not 
reached, are analyzed by Subsection A, while Subsections B 
and C present the scale analysis of the equilibrium state: B–the 
mass driven convection regime (MDC), C–the heat driven 
convection regime (HDC). 

A. Scale Analysis of the Transient Stage 

In the first moments, before the system reaches the 
equilibrium state, in the energy conservation equation, (9), the 
equilibrium between the inertia and the diffusion of heat in the 
Y direction is attained: 
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As the temperature difference across the thermal boundary 
layer is   and T~Y  , the temperature boundary layer 

thickness in the transient regime, T , becomes: 
 

2/1
T ~  .                                                                            (13) 

 
Similarly, in the species conservation equation, (10), the 

equilibrium between the inertia and the diffusion in the Y 

direction, 22 Y/Le/1~/   , reveals the thickness of 

the concentration boundary layer, C : 
 

2/12/1
C Le/~  .                                                                 (14) 

 
Assuming that the temperature and the concentration 

boundary layers thickness scale XT   and XC  , we 

neglect the X/U   term in (8): 
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Integrating (15) from 0Y   to infinity, we obtain: 
 

  NRaRa~V .                                                  (16) 
 

Taking into account that the temperature difference across 

the temperature boundary layer is 2/12/1
0xT0x tT~T~T   

or 2/1~  , the first term on the right hand side of (16) (VT–
the vertical velocity due to the buoyancy force that is 
determined by the volumetric thermal expansion) can be 
written as: 

 

  2/1
T Ra~Ra~V   .                                                   (17) 

 
The concentration difference across the concentration 

boundary layer is  0w CC~C   or 1~  and, 

consequently, the second term on the right hand side of (16) 
(VC–the vertical velocity due to the buoyancy force that is 
determined by the volumetric concentration expansion) 
becomes: 

 
  NRa~NRa~VC   .                                                (18) 

 
Using (16)−(18), the order of magnitude of the vertical 

velocity field is given by: 
 

NRaRa~V 2/1  .                                                         (19) 
 

The analysis of (19) shows that the VT increases in time, 
while VC is constant. Consequently, a mass driven convection 
(MDC) regime dominates initially at each X=constant level, 
but, if the equilibrium time, ech , is bigger than the transition 

time, trz :  
 

2
trzech N  ,                                                              (20) 

 
A heat driven convection (HDC) regime will be installed 

and it will reach the equilibrium state at that abscissa. It is the 
aim of this paper to establish the maps of the equilibrium mass 
and heat driven natural convection regimes that appear in the 
boundary layer near the vertical wall. In order to draw these 
maps, the scale analysis of the mass and heat driven 
convection regimes will be analyzed in the next two 
subsections. 

B. Scale Analysis of the Mass Driven Convection (MDC) 
Regime  

In the mass driven convection regime, the equilibrium is 
reached when the mass flux diffused in the Y direction equals 
the mass flux convected in the X direction: 
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The order of magnitude of the time when the equilibrium is 

attained is established by replacing the vertical velocity with 
the component dominant in the MDC regime, (18), and C  

from (14): 
 

 NRa/X~C  .                                                                (22) 
 

At this moment, according to (14), the concentration 
boundary layer thickness is: 
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The equilibrium time, C , is bigger than the transition time, 

trz , only if  
 

XNRaX 3
C,trz  .                                                          (24) 

 
Further, this study is completed by analyzing the 

temperature field in the mass driven convection regime.  

C. Scale Analysis of the Temperature Field in the Mass 
Driven Convection Regime 

For a complete understanding of the temperature field in the 
mass driven convection regime, the relative magnitude of the 
two vertical convective terms, TSV   and X/V   ,  in the 

energy conservation equation, (9), must be analyzed. The 

TSV   term is dominant if X/S 2/1
t   or  
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ts XS .                                                                     (25) 
 

As (25) tells us, at the beginning, when s  , the TSV   

term is dominant but, in time, this situation remains 
unchanged or not depending on the relative magnitude of s , 
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trz , C  and the time when the temperature field attains the 

equilibrium state. 
Further, the equilibrium time will be established for the two 

situations that could be encountered:  
a) If (9) is characterized by the dominance of the 

X/V    term, then, its scale analysis reveals that: 
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The time when the temperature field reaches the 

equilibrium state is found by replacing (18) and (13) in (26): 
 
   NRa/X~

CT,ech  .                                                        (27) 

 
As we can notice, for this situation, the temperature and the 

concentration fields attain the equilibrium state in the same 
moment as C , (22), and  

CT,ech , (27), have the same form. 

Using (13), at the equilibrium state, the temperature 
boundary layer thickness is: 
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b) If the TSV   term is the dominant vertical convection 

term in (9), then the scale analysis reveals that: 
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Using (13) and (18), we conclude that the moment when the 

equilibrium is attained has the order of magnitude 

    2tCSt,ech SNRa/1~   and that the magnitude of the 

equilibrium temperature boundary layer thickness is: 
 
   tCSt,ech SNRa/1~  .                                                   (30) 

 

Further, the equilibrium time  
CSt,,ech  will be compared 

to trz  and s : 

b1)  The equilibrium time  
CSt,,ech  is smaller than the 

transition time, trz , on the domain defined by (31): 
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b2) The possibility to have   sCSt,ech    is restricted to the 

domain defined bellow: 
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Fig. 2 The heat and mass driven natural convection regimes sequence 

a) 1SNRa T
2  ; b) 1SNRa T

2   
 
Two distinct situations appear: 

1. If (31) is valid, then the mass→heat driven convection 
transformation is taking place for abscissa greater than 
Xtrz,C ((24) and Fig. 2 (a)).  

If (31) is valid, then the inequality   32
T NRaSNRa1   

is also valid and, consequently, the TSV   term remains the 

dominant vertical convection term in the heat transfer equation 
before the mass→heat driven convection transition is taking 

place in the   ]NRa,SNRa1[ 32
T   domain (the MDCSt 

domain). The X/V    term becomes the dominant vertical 

convection term in the  ]SNRa1,0[ 2
T  domain (the MDCT 

domain). The regimes succession is presented by Fig. 2 (a): 
MDCT  MDCSt   HDCSt. 

2. If (31) is not valid,   32
T NRaSNRa1   and the 

mass→heat driven convection transition is taking place 
after the X/V    term becomes dominant.  

Fig. 2 (b) presents the regimes succession: MDCT  HDCT 

 HDCSt.  
In order to establish the abscissa where the HDCT  HDCSt 

transition is taking place, the scale analysis of the HDC regime 
is presented in the next section. 

C. Scale Analysis of the Heat Driven Convection Regime 

Two heat driven convection regime types : HDCSt regime 
(the TSV   term is dominant and (25) is valid, Subsection C 

1.) and HDC regime (the X/V    term is dominant, 
Subsection C 2.) are encountered and they will be treated 
separately. 

1. HDCSt Regime 

The equilibrium state in the HDCSt regime is reached in the 
moment when the diffusion of heat away from the wall, in the 
Y direction, equals the convection of heat expressed by the 

TSV   term: 
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Replacing (13) and (17) in (33), we obtain the equilibrium 

time: 
 

   RaS/1~ TTSt,ech  .                                                    (34) 

 
At this moment, the temperature boundary layer thickness is 
 

  RaS/1~ TTSt,ech  .                                                (35) 

 
This state of equilibrium is attained before the transition 
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This is the condition that separates the HDC and HDCSt 

regimes in Fig. 2 (b). 
For the 1SNRa T

2   case (Fig. 2 (a)), 

33
T NRaSRa/1   and we can verify once again that a 

HDCSt regime is installed beyond Xtrz,C abscissa. 

2. HDC Regime 

In the region where the X/V    term is dominant, the 

equilibrium state is characterized by: 2
t/~X/V  . 

The equilibrium time is: 
 

  3/2
TT,ech )Ra/X(~ .              (37) 

 
and the thermal boundary layer thickness becomes: 
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D. Scale Analysis of the Concentration Field in the Heat 
Driven Convection Regime 

The scale analysis of (10) reveals that 
22 Y/Le/1~X/V   . Using (14) and (17), the time 

when the concentration field attains the equilibrium state is: 
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thickness is: 
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Imposing the condition for the thermal boundary layer 
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we obtain the same requirement: 0.1ST  . As 
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concentration boundary layer approximation,   X
CC,ech  , 

imposes the condition:  LeRaN/1X   and it defines a 

diffusive region [23] that occurs for small values of X. 

IV. NUMERICAL MODELING 

Using a stream function formulation for the velocity field: 
X/U   , Y/V   , the new form of the 

dimensionless governing equations is given by (40)−(42): 
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The following boundary conditions apply to (40)−(42): 
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The governing equations, (40)-(42), subjected to the 

boundary conditions, (43), were solved numerically using the 
finite difference method, the higher order hybrid scheme –  the 
“QUICK scheme” [25], [26]. Second-order finite-difference 
representation was used for all the terms of (40); third-order  
one-sided finite-difference representation was used for the 
convection terms at the boundary points in (41) and (42); the 
left boundary of (41) received a first-order finite-difference 
representation of (43a) using an external point. The influence 
of the number of the grid points, the upper limit of the 
computational domain, the time step and the variables relative 
error on the results (the Nusselt number, the Sherwood 
number, the values of the temperature and the concentration 
fields) was analyzed. The program was also tested with good 
results using the boundary conditions and the data already 
published in the literature [27]-[29]. 

V. RESULTS AND DISCUSSIONS 

The MDCTHDCTHDCSt regime sequence that is 
encountered for the 1SNRa T

2   case was verified using the 

300Ra  , 2.0N  , 1Le   and 02.0ST   case. A domain with 

25H   and 7.0Y   was discretized using 711251  points 

uniformly distributed along the X and Y direction, 
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respectively, a situation that proved to assure a high accuracy 
of the results: the Nusselt and the Sherwood numbers have a 
precision higher than 2%, while the relative error for the 
temperature, concentration and stream function fields in each 
point is less than 10-6. The results of Section III show that 

MDCTHDCT transition takes place at the 4.2NRa 3   
abscissa and that the HDCTHDCSt transition occurs at 

4.20RaS/1 3
T    abscissa.  Fig. 3 presents the dimensionless 

temperature (Fig. 3 (a)), concentration (Fig. 3 (b)), and stream 
function (Fig. 3 (c) and   TS/X/   (Fig. 3 (d)) fields for 

the considered case. Fig. 3 (a) shows values of the temperature 
field greater than 0.2 for 84.1X   and, in this way, it reveals 
the MDCTHDCT transition point. Fig. 3 (d) shows values of 
  TS/X/   smaller than 1.0 for 6.3X  ; it verifies the 

HDCTHDCSt transition. The difference between the 
analytical values (20.4) and the numerical value (3.6) of this 
transition abscissa is due to the approximations induced by the 
scale analysis method.  

In the MDCT region, Figs. 4 (a)-(c) present the temperature, 
concentration and vertical velocity fields for three abscissas: 
0.67, 0.83; 1.0. Making use of (28), (23) and (18), Figs. 4 (d)-
(f) present the scaled temperature, concentration and vertical 
velocity fields as a function of the scaled ordinate for the same 
abscissa. The collapse of these graphs on the same curve, 
proves the validity of the scaling dimensions determined 
previously. 

 

Fig. 3 (a) Dimensionless temperature   , (b) concentration   , (c) 

stream function    and (d)   TS/X/   fields 300Ra  , 

2.0N  , 1Le   and 02.0ST   

 

 

Fig. 4 (a) , (b) , and (c) V fields variations as a function of Y co-ordinate and the scaled (d) temperature, (e) concentration and (f) vertical 

velocity field variations as a function of scaled  ordinate, for three abscissas: 0.63, 0.8 and 1.0, 300Ra  , 2.0N  , 1Le   and 02.0ST   

 
Figs. 5 (a)-(c) present the temperature, concentration and 

velocity fields for three abscissas: 2.67, 3.0 and 4.0 belonging 
to the HDCT region. Figs. 5 (d)-(f) present the scaled 
temperature, concentration and vertical velocity fields as a 
function of the scaled ordinate for the same abscissas 
mentioned above and making use of the results given by (38), 
(39), (37) and (17). 

Figs. 6 (a)-(c) present the temperature, concentration and 
velocity fields for the following abscissas: 21.0, 22.0 and 24.0 
of the HDCSt region. For the same abscissas, using (35), (39), 
(34) and (17), Figs. 6 (d)-(f) present the scaled temperature, 
concentration and velocity fields as a function of the scaled 
ordinate giving a verification of the natural convection regime 
and the scaled defined for this region. 
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The 1SNRa T
2   case (Fig. 2 (a)), the MDCTMDCSt 

HDCSt natural convection regimes sequence will be verified 
considering the 600Ra  , 2.0N  , 1Le   and 05.0ST   

system. A domain with 6H   and 4.0Y   was discretized 

using 46606   points uniformly distributed, a situation that 
assures the same accuracy as for the previous case. The results 
of Section III indicate that the MDCTMDCSt transition takes 

place at the   34.3RaNS/1 2
T   abscissa and that the MDCSt 

HDCSt transition occurs at 8.4NRa 3   abscissa. The 
numerical modeling results presented by Fig. 7 show that the 
  TS/X/   values become smaller than 1.0 (i.e., the MDCSt 

regime occurs) for 02.1X  , while the temperature field has 
values greater than 0.2 (i.e., the MDCStHDCSt transition 
occurs) for 4.4X  .  

 

 

Fig. 5 (a) , (b) , and (c) V fields variations as a function of Y co-ordinate and the scaled (d) temperature, (e) concentration and (f) vertical 

velocity field variations as a function of scaled  ordinate, for three abscissas: 2.67, 3.0 and 4.0, 300Ra  , 2.0N  , 1Le   and 02.0ST   

 

 

Fig. 6 (a) , (b) , and (c) V fields  variations as a function of Y co-ordinate and the scaled (d) temperature, (e) concentration and (f) vertical 
velocity field variations as a function of scaled  ordinate, for three abscissas: 21.0, 22.0 and 24.0, 300Ra  , 2.0N  , 1Le   and 

02.0ST   

 
The MDCT region and its scaling results were verified using 

the temperature, concentration and vertical velocity plots at 
the following abscissas: 0.5, 0.67 and 0.83 (Figs. 8 (a)-(c)), 
while Figs. 8 (d)-(f) present the scaled temperature, 
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concentration and velocity fields as a function of the scaled 
ordinate for the same abscissas. The collapse of these graphs 
on the same curve, prove the validity of the scaling 
dimensions determined previously. 

Figs. 9 (a)-(c) present the temperature, concentration and 
vertical velocity fields for three abscissas: 3.5, 3.75 and 4.0 in 
the MDCSt section. Figs. 9 (d)-(f) present the scaled 
temperature, concentration and velocity fields as a function of 
the scaled ordinate making use of (30), (23) and (18).   

The HDCSt region results were proved by plotting the 
temperature, concentration and velocity fields for the 
following abscissa: 5.0, 5.4 and 5.8 (Figs. 10 (a)-(c)). For the 
same abscissas, using the results given by (35), (39), (34) and 
(17), Figs. 10 (d)-(f) present the scaled temperature, 
concentration and vertical velocity fields as a function of the 
scaled ordinate giving a verification of the natural convection 
regime and the results obtained for this region. 

The results presented by Figs. 3-10 prove the succession of 
the heat/mass transfer regimes for the two possible cases 
revealed by the scale analysis of the system. 
 

 

Fig. 7 (a) , (b) , (c) , and (d)   TS/X/   fields. 600Ra  , 

2.0N  , 1Le   and 05.0ST   

 
 

 

Fig. 8 (a) , (b) , and (c) V fields variations as a function of Y co-ordinate and the scaled (d) temperature, (e) concentration and (f) vertical 

velocity field variations as a function of scaled  ordinate, for the abscissas: 0.50, 0.67 and 0.83, 600Ra  , 2.0N  , 1Le   and 05.0ST   
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Fig. 9 (a) , (b) , and (c) V fields variations as a function of Y co-ordinate and the scaled (d) temperature, (e) concentration and (f) vertical 

velocity field variations as a function of scaled  ordinate, for three abscissas: 3.5, 3.75 and 4.0, 600Ra  , 2.0N  , 1Le   and 05.0ST   

 

 

Fig. 10 (a) , (b) , and (c) V fields variations as a function of Y co-ordinate and the scaled (d) temperature, (e) concentration and (f) vertical 

velocity field variations as a function of scaled  ordinate, for three abscissas: 5.0, 5.4 and 5.8, 600Ra  , 2.0N  , 1Le   and 05.0ST 
   

VI. CONCLUSION 

The natural convection process that is taking place in a 
fluid-saturated Darcy thermally stratified porous medium that 
embeds a vertical impermeable wall of constant heat flux and 
concentration is an array of mass and heat driven convection 
regimes that attain the equilibrium state along the wall.  

If 1SNRa T
2  , after the first region, where a mass 

driven convection regime (MDCT) is present, an intermediate 
MDCSt regime is followed by an HDCSt regime.  

If 1SNRa T
2  , then, at equilibrium, after the first MDCT 

region, we encounter a HDCT region followed by an HDCSt 
region.  

This paper brings a new understanding of the important 
natural convection process triggered in a fluid-saturated 
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thermally stratified porous medium by a vertical impermeable 
wall of constant heat flux and concentration. This work 
triggers similar analysis regarding a doubly stratified Darcy 
porous medium, a vertical wall of constant temperature and 
mass flux, etc.    

REFERENCES  
[1] G. Degan, C. Akowanou, N. C. Awanou, “Transient natural convection 

of non-Newtonian fluids about a vertical surface embedded in an 
anisotropic porous medium,” International Journal of Heat and Mass 
Transfer, vol. 50, no. 23−24, pp. 4629−4639, 2007. 

[2] C. ‘O.-K. Chen, C.-R. Lin, “Natural convection from an isothermal 
vertical surface embedded in a thermally stratified high-porosity 
medium,”  International Journal of Engineering Science, vol. 33, no. 1, 
pp. 131−138, 1995. 

[3] K. Tewari. P. Singh, “Natural convection in a thermally stratified fluid 
saturated porous medium,” International Journal of Engineering 
Science, vol. 30, no. 8, pp. 1003−1007, 1992. 

[4] C.-I. Hung, C.-H. Chen, C.-B. Chen, “Non-Darcy free convection along 
a nonisothermal vertical surface in a thermally stratified porous 
medium,” International Journal of Engineering Science, vol.  37, no. 4, 
pp. 477−495, 1999. 

[5] F. C. Lai, “Non-Darcy natural convection from a line source of heat in 
saturated porous medium,” International Communications in Heat and 
Mass Transfer, vol. 18, no. 4, pp. 445−457, 1991. 

[6] Z. H. Kodah, A. M. Al-Gasem, “Non-Darcy mixed convection from a 
vertical plate in saturated porous media-variable surface heat flux,” Heat 
and Mass Transfer , vol. 33, no. 5−6, pp. 377−382, 1998. 

[7] R. S. Telles, O. V. Trevisan, “Dispersion in heat and mass transfer 
natural convection along vertical boundaries in porous media,” 
International Journal of Heat and Mass Transfer, vol. 36, no. 5, pp. 
1357−1365, 1993. 

[8] D. Angirasa, G. P. Peterson, “Natural convection heat transfer from an 
isothermal vertical surface to a fluid saturated thermally stratified porous 
medium,” International Journal of Heat and Mass Transfer, vol. 40, no. 
18, pp. 4329−4335, 1997. 

[9] J.-Y. Jang, J.-R. Ni, “Transient free convection with mass transfer from 
an isothermal vertical flat plate embedded in a porous medium,” 
International Journal of Heat and Fluid Flow, vol. 10, no. 1, pp. 59−65, 
1989. 

[10] A. Bejan, K. R. Khair, “Heat and mass transfer by natural convection in 
a porous medium,” International Journal of Heat and Mass Transfer, 
vol.  28, no. 5, pp. 909−918, 1985. 

[11]  D. Angirasa, G. P. Peterson, I. Pop, “Combined heat and mass transfer 
by natural convection with opposing buoyancy effects in a fluid 
saturated porous medium,” International Journal of Heat and Mass 
Transfer, vol. 40, no. 12, pp. 2755−2773, 1997. 

[12] I. Pop, H. Herwig, “Transfer mass transfer from an isothermal vertical 
flat plate embedded in a porous medium,” International 
Communications in Heat and Mass Transfer, vol. 17, no. 6, pp. 
813−821, 1990. 

[13] C. Allain, M. Cloitre, A. Mongruel, “Scaling in flows driven by heat and 
mass convection in a porous medium,” Europhysics Letters, vol. 20, no. 
4, pp. 313−318, 1992. 

[14] M. A. El-Hakiem, M. F. El-Amin, “Mass transfer effects on the non-
Newtonian fluids past a vertical plate embedded in a porous medium 
with non-uniform surface heat flux,” Heat and Mass Transfer, vol. 37, 
no. 2−3, pp. 293−297, 2001. 

[15] R. Tsai, J. S. Huang, “Numerical study of Soret and Dufour effects on 
heat and mass transfer from natural convection flow over a vertical 
porous medium with variable wall heat fluxes,” Computational 
Materials Science, vol. 47, no. 1, pp. 23−30, 2009. 

[16] C.-Y. Cheng, “Natural convection heat and mass transfer of non-
Newtonian power law fluids with yield stress in porous media from a 
vertical plate with variable wall heat and mass fluxes,” International 
Communications in Heat and Mass Transfer, vol. 33, no. 9, pp. 
1156−1164, 2006. 

[17] M. K. Partha, P. V. S. N. Murthy, G. P. Raja Sekhar, “Soret and Dufour 
effects in a non-Darcy porous medium,” ASME Journal of Heat 
Transfer, vol. 128, no. 6, pp. 605−610, 2006. 

[18] R. R. Kairi, P. A. L. Narayana, P. V. S. N. Murthy, “The effect of double 
dispersion on natural convection heat and mass transfer in a non-

Newtonian fluid saturated non-Darcy porous medium,” Transport in 
Porous Media, vol. 76, no. 3, pp. 377−390, 2009. 

[19] P. Singh, K. Tewari, “Non-Darcy free convection from vertical surfaces 
in thermally stratified porous media,” International Journal of 
Engineering Science, vol. 31, no. 9, pp. 1233−1242, 1993. 

[20] I. Y. Hussain, B. K. Raheem, “Natural convection heat transfer from a 
plane wall to thermally stratified porous media,” International Journal 
of Computer Applications, vol.  65, no. 1, pp. 42−49, 2013. 

[21] P. Singh, K. Sharma, “Integral method to free convection in thermally 
stratified porous medium,” Acta Mechanica, vol.  83, no. 3−4, pp. 
157−163, 1990. 

[22] P. A. Lakshmi Narayana, P. V. S. N. Murthy, “Free convective heat and 
mass transfer in a doubly stratified non-Darcy porous medium,” ASME 
Journal of Heat Transfer , vol. 128, no. 11, pp. 1204−1212, 2006. 

[23] S. W. Armfield, J. C. Patterson, W. Lin, “Scaling investigation of the 
natural convection boundary layer on an evenly heated plate,” 
International Journal of Heat and Mass Transfer, vol. 50, no. 7-8, pp. 
1592-1602, 2007. 

[24] A. Bejan, Convection Heat Transfer. New York: Wiley, 1995, pp. 
18−21, pp. 535-539. 

[25] C. A. J. Fletcher, Computational Techniques for Fluid Dynamics 1. 
Fundamental and General Techniques. New York: Springer-Verlag, 
1991, pp. 296-299. 

[26] J. C. Tannehill, D. A. Anderson, R. H. Pletcher, Computational Fluid 
Mechanics and Heat Transfer. Washington: Taylor&Francis, 1997, ch 3. 

[27] O. V. Trevisan, A. Bejan, “Natural convection with combined heat and 
mass transfer buoyancy effects in a porous medium,” International 
Journal of Heat and Mass Transfer, vol. 28, no. 8, pp. 1597-1611, 1985. 

[28] D. Getachew, D. Poulikakos, W. J. Minkowycz, “Double diffusion in a 
porous cavity saturated with non-Newtonian fluid,” Journal of 
Thermophysics and Heat Transfer, vol. 12, no. 3, pp. 437−446, 1998. 

[29] R. Bennacer, A. Tobbal, H. Beji, P. Vasseur, “Double diffusive 
convection in a vertical enclosure filled with anisotropic porous media,” 
International Journal of Thermal Sciences, vol. 40, no. 1, pp. 30-41, 
2001. 


