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An Efficient Iterative Updating Method for Damped
Structural Systems

Jiashang Jiang

Abstract—Model updating is an inverse eigenvalue problem which
concerns the modification of an existing but inaccurate model with
measured modal data. In this paper, an efficient gradient based
iterative method for updating the mass, damping and stiffness
matrices simultaneously using a few of complex measured modal
data is developed. Convergence analysis indicates that the iterative
solutions always converge to the unique minimum Frobenius norm
symmetric solution of the model updating problem by choosing a
special kind of initial matrices.

Keywords—Model updating, iterative algorithm, damped structural
system, optimal approximation.

I. INTRODUCTION

USING a finite element modeling, equation of motion of
a linear elastic time-invariant structure with n degree of

freedoms is given by

Maq̈(t) +Daq̇(t) +Kaq(t) = 0. (1)

The vector q(t) represents the generalized coordinates of the
system. Ma, Da and Ka are, respectively, called the analytical
mass, damping and stiffness matrices. Equation (1) is usually
known as the finite element model (analytical model). If a
fundamental solution to (1) is represented by q(t) = xeλt,
then the scalar λ and the vector x must solve the quadratic
eigenvalue problem

(λ2Ma + λDa +Ka)x = 0. (2)

Complex numbers λ and nonzero complex vectors x for
which this relation holds are, respectively, the eigenvalues
and eigenvectors of the system. Equation (2) has 2n finite
eigenvalues over the complex field, provided that the leading
matrix coefficient Ma is nonsingular. It is known that the
dynamical behavior of the differential system (1) usually
can be interpreted via the eigenvalues and the corresponding
eigenvectors of (2). The analytical model (1) is often validated
by comparing their analytical modes of vibration with the
results measured by modal testing. However, most modal
data obtained by the finite element model don’t agree with
the experimental results. The lack of correlation between
the analytical predictions and the experimental results can
be traced to either experimental or modelling errors, or a
combination of both. In order to obtain the most accurate
and reliable model, the original analytical model (1) must be
updated using the measured eigendata such that the agreement
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between analytical predictions and test results is improved.
The updated model may then be considered a better dynamical
representation of the structure, and can be used with greater
confidence for the analysis of the structure under different
boundary conditions or with physical structural changes. The
process is known as model updating.

In the past 40 years, various techniques for updating mass
and stiffness matrices for undamped systems (i.e., Da =
0) using measured response data have been discussed by
[1]-[5]. For an account of the earlier methods, see [6], an
integral introduction of the basic theory of finite element
model updating is given. For damped structured systems, the
theory and computation have been considered by [7]-[10].
All these existing methods are direct updating coefficient
matrices, but the explicit solution is too difficult to be
obtained by applying matrix computation techniques. We
observe that the iterative methods for model updating have
received little attention in these years. This paper we will
offer a simple yet effective gradient based iterative algorithm
to solve the damped structural model updating problem which
can incorporate the measured eigendata into the finite element
model to produce an adjusted model on the mass, damping and
stiffness matrices that closely match the experimental modal
data.

Let Λ = diag{λ1, · · · , λp} ∈ Cp×p and
X = [x1, · · · , xp] ∈ Cn×p be the measured eigenvalue
and eigenvector matrices, where p � n and both Λ and
X are closed under complex conjugation in the sense that
λ2j = λ̄2j−1 ∈ C, x2j = x̄2j−1 ∈ Cn for j = 1, · · · , l, and
λk ∈ R, xk ∈ Rn for k = 2l + 1, · · · , p. The problem of
updating mass, damping and stiffness matrices simultaneously
can be mathematically formulated as follows.
Problem P. Given real-valued symmetric matrices
Ma, Da,Ka ∈ Rn×n, find (M̂, D̂, K̂) ∈ SE such that

‖M̂ −Ma‖2 + ‖D̂ −Da‖2 + ‖K̂ −Ka‖2 =
min(M,D,K)∈SE

(‖M −Ma‖2 + ‖D −Da‖2 + ‖K −Ka‖2),
where

SE =
{
(M,D,K) ∈ SRn×n × SRn×n × SRn×n |
MXΛ2 +DXΛ +KX = 0

}
.

In Section II, an efficient gradient based iterative method is
presented to solve Problem P and the convergence properties
are discussed. By using the proposed iterative algorithm, the
unique minimum Frobenius norm symmetric solution can be
obtained by choosing a special kind of initial matrices. Some
concluding remarks are give in Section III.
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Throughout this paper, we shall adopt the following
notation: Cm×n and Rm×n denote the set of all m × n
complex and real matrices, and the set of all symmetric
matrices in Rn×n by SRn×n. A�, tr(A) and R(A) stand
for the transpose, the trace and the column space of the
matrix A, respectively. λmax(M

�M) denotes the maximum
eigenvalue of M�M, In represents the identity matrix of
order n, ᾱ denotes the conjugation of the complex number α
and ‖ · ‖ represents the Frobenius norm. Given two matrices
A = [aij ] ∈ Rm×n and B ∈ Rp×q , the Kronecker product of
A and B is defined by A⊗B = [aijB] ∈ Rmp×nq. Also, for
an m×n matrix A = [a1, a2, · · · , an], where ai, i = 1, · · · , n,
is the i-th column vector of A, the stretching function vec(A)
is defined as vec(A) = [a�1 , a

�
2 , · · · , a�n ]�.

II. THE SOLUTION OF PROBLEM P

Define a complex matrix Tp as

Tp =

diag
{

1√
2

[
1 −i
1 i

]
, · · · , 1√

2

[
1 −i
1 i

]
, Ip−2l

}
∈ Cp×p,

where i =
√−1. It is easy to verify that Tp is a unitary matrix,

that is, T̄�
p Tp = Ip. Using this transformation matrix, we have

Λ̃ = T̄�
p ΛTp = diag

{[
ζ1 η1
−η1 ζ1

]
,

· · · ,
[

ζ2l−1 η2l−1

−η2l−1 ζ2l−1

]
, λ2l+1, · · · , λp

}
∈ Rp×p,

(3)

X̃ = XTp = [
√
2y1,

√
2z1, · · · ,

√
2y2l−1,

√
2z2l−1,

x2l+1, · · · , xp] ∈ Rn×p,
(4)

where ζj and ηj are respectively the real part and the
imaginary part of the complex number λj , and yj and zj
are respectively the real part and the imaginary part of the
complex vector xj for j = 1, 3, · · · , 2l−1. It follows from (3)
and (4) that the equation of MXΛ2 +DXΛ +KX = 0 can
be equivalently written as

MX̃Λ̃2 +DX̃Λ̃ +KX̃ = 0,
s. t. M ∈ SRn×n, D ∈ SRn×n, K ∈ SRn×n.

For a given matrix triplet (Ma, Da,Ka), we have

MX̃Λ̃2 +DX̃Λ̃ +KX̃ = 0

⇔ (M −Ma)X̃Λ̃2 + (D −Da)X̃Λ̃ + (K −Ka)X̃

= −MaX̃Λ̃2 −DaX̃Λ̃−KaX̃.

Let
M̃ = M −Ma,

D̃ = D −Da,

K̃ = K −Ka,

F = −MaX̃Λ̃2 −DaX̃Λ̃−KaX̃,

then solving Problem P is equivalent to finding the minimum
Frobenius norm solution of the matrix equation

M̃X̃Λ̃2 + D̃X̃Λ̃ + K̃X̃ = F,

s. t. M̃ ∈ SRn×n, D̃ ∈ SRn×n, K̃ ∈ SRn×n.
(5)

Once the minimum Frobenius norm solution (M̃∗, D̃∗, K̃∗)
of (5) is obtained, the solution of the matrix optimal
approximation Problem P can be computed. In this case, can
be expressed as

M̂ = Ma + M̃∗,
D̂ = Da + D̃∗,
K̂ = Ka + K̃∗.

(6)

Lemma 1: [11], [12]. If the linear equation system Hx = b,
where H ∈ Rm×n, b ∈ Rm, has a unique solution x∗, then
the gradient based iterative algorithm

xk = xk−1 + μH�(b−Hxk−1), 0 < μ <
2

λmax(H�H)
,

yields limk→∞ xk = x∗.
Lemma 2: [13]. Suppose that the consistent linear equation

Ax = b, where A ∈ Rm×n, b ∈ Rm, has a solution
x ∈ R(A�), then x is the unique minimum Frobenius norm
solution of the linear equation.

Lemma 3: Equation (5) has a symmetric solution triplet
(M̃, D̃, K̃) if and only if the matrix equations

M̃X̃Λ̃2 + D̃X̃Λ̃ + K̃X̃ = F,

Λ̃2�X̃�M̃ + Λ̃�X̃�D̃ + X̃�K̃ = F�,
(7)

are consistent.
Proof. If (5) has a symmetric solution triplet (M̃∗, D̃∗, K̃∗),
then M̃∗X̃Λ̃2+D̃∗X̃Λ̃+K̃∗X̃ = F, and (M̃∗X̃Λ̃2+D̃∗X̃Λ̃+
K̃∗X̃)� = Λ̃2�X̃�M̃∗ + Λ̃�X̃�D̃∗ + X̃�K̃∗ = F�. That
is to say, (M̃∗, D̃∗, K̃∗) is a solution of (7). Conversely, if
(7) has a solution, say, M̃ = U, D̃ = V, K̃ = W . Let
M̃∗ = 1

2 (U +U�), D̃∗ = 1
2 (V + V �), K̃∗ = 1

2 (W +W�),
then M̃∗, D̃∗ and K̃∗ are symmetric matrices, and

M̃∗X̃Λ̃2 + D̃∗X̃Λ̃ + K̃∗X̃

=
1

2
(UX̃Λ̃2 + V X̃Λ̃ +WX̃)

+
1

2
(U�X̃Λ̃2 + V �X̃Λ̃ +W�X̃)

=
1

2
F +

1

2
(F�)� = F.

Hence, (M̃∗, D̃∗, K̃∗) is a symmetric solution triplet of (5).
Using the Kronecker product and the stretching function,

we know that (7) is equivalent to

[
Λ̃2�X̃� ⊗ In Λ̃�X̃� ⊗ In X̃� ⊗ In
In ⊗ Λ̃2�X̃� In ⊗ Λ̃�X̃� In ⊗ X̃�

]⎡⎣ vec(M̃)

vec(D̃)

vec(K̃)

⎤
⎦

=

[
vec(F )
vec(F�)

]
.

Let

H =

[
Λ̃2�X̃� ⊗ In Λ̃�X̃� ⊗ In X̃� ⊗ In
In ⊗ Λ̃2�X̃� In ⊗ Λ̃�X̃� In ⊗ X̃�

]
.
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According to Lemma 1, we have the gradient based iterative
algorithm for (7) described as follows.⎡

⎣ vec(M̃s)

vec(D̃s)

vec(K̃s)

⎤
⎦ =

⎡
⎣ vec(M̃s−1)

vec(D̃s−1)

vec(K̃s−1)

⎤
⎦

+μH�

⎛
⎝[ vec(F )

vec(F�)

]
−H

⎡
⎣ vec(M̃s−1)

vec(D̃s−1)

vec(K̃s−1)

⎤
⎦
⎞
⎠ .

(8)

After some algebra manipulations this results in

M̃s = M̃s−1 + μ
[
F Λ̃2�X̃� + X̃Λ̃2F�

− M̃s−1X̃Λ̃2Λ̃2�X̃� − X̃Λ̃2Λ̃2�X̃�M̃s−1

− D̃s−1X̃Λ̃Λ̃2�X̃� − X̃Λ̃2Λ̃�X̃�D̃s−1

− K̃s−1X̃Λ̃2�X̃� − X̃Λ̃2X̃�K̃s−1

]
, (9)

D̃s = D̃s−1 + μ
[
F Λ̃�X̃� + X̃Λ̃F�

− M̃s−1X̃Λ̃2Λ̃�X̃� − X̃Λ̃Λ̃2�X̃�M̃s−1

− D̃s−1X̃Λ̃Λ̃�X̃� − X̃Λ̃Λ̃�X̃�D̃s−1

− K̃s−1X̃Λ̃�X̃� − X̃Λ̃X̃�K̃s−1

]
, (10)

K̃s = K̃s−1 + μ
[
FX̃� + X̃F�

− M̃s−1X̃Λ̃2X̃� − X̃Λ̃2�X̃�M̃s−1

− D̃s−1X̃Λ̃X̃� − X̃Λ̃�X̃�D̃s−1

− K̃s−1X̃X̃� − X̃X̃�K̃s−1

]
. (11)

From (9), (10) and (11) we can easily see that if
the initial matrices M̃0, D̃0, K̃0 ∈ SRn×n, then
M̃s ∈ SRn×n, D̃s ∈ SRn×n and K̃s ∈ SRn×n for
s = 1, 2, · · · .

Theorem 1: Suppose that (5) has a unique symmetric
solution (M̃∗, D̃∗, K̃∗). If we choose the convergence factor
as

0 < μ < μ0, (12)

where μ0 = 1
λmax(Λ̃2�X̃�X̃Λ̃2)+λmax(Λ̃�X̃�X̃Λ̃)+λmax(X̃�X̃)

.

then the sequences {M̃i}, {D̃i} and {K̃i} generated by
(9), (10) and (11) satisfy

lims→∞ M̃s = M̃∗,
lims→∞ D̃s = D̃∗,
lims→∞ K̃s = K̃∗

(13)

for any arbitrary initial matrix triplet (M̃0, D̃0, K̃0) with
M̃0, D̃0, K̃0 ∈ SRn×n.

Proof. Define the error matrices M̃∗
s , D̃

∗
s and K̃∗

s as

M̃∗
s = M̃s − M̃∗,

D̃∗
s = D̃s − D̃∗,

K̃∗
s = K̃s − K̃∗.

Using (9)-(11) and (7), we have

M̃∗
s = M̃∗

s−1

−μ
(
M̃∗

s−1X̃Λ̃2Λ̃2�X̃� + X̃Λ̃2Λ̃2�X̃�M̃∗
s−1

+ D̃∗
s−1X̃Λ̃Λ̃2�X̃� + X̃Λ̃2Λ̃�X̃�D̃∗

s−1

+ K̃∗
s−1X̃Λ̃2�X̃� + X̃Λ̃2X̃�K̃∗

s−1

)
, (14)

D̃∗
s = D̃∗

s−1

−μ
(
M̃∗

s−1X̃Λ̃2Λ̃�X̃� + X̃Λ̃Λ̃2�X̃�M̃∗
s−1

+D̃∗
s−1X̃Λ̃Λ̃�X̃� + X̃Λ̃Λ̃�X̃�D̃∗

s−1

+ K̃∗
s−1X̃Λ̃�X̃� + X̃Λ̃X̃�K̃∗

s−1

)
, (15)

K̃∗
s = K̃∗

s−1

−μ
(
M̃∗

s−1X̃Λ̃2X̃� + X̃Λ̃2�X̃�M̃∗
s−1

+D̃∗
s−1X̃Λ̃X̃� + X̃Λ̃�X̃�D̃∗

s−1

+ K̃∗
s−1X̃X̃� + X̃X̃�K̃∗

s−1

)
. (16)

Let
Ps−1 = M̃∗

s−1X̃Λ̃2,

Qs−1 = D̃∗
s−1X̃Λ̃,

Ws−1 = K̃∗
s−1X̃.

By (14) we have

M̃∗
s = M̃∗

s−1 − μ(Ps−1 +Qs−1 +Ws−1)Λ̃
2�X̃�

−μX̃Λ̃2(Ps−1 +Qs−1 +Ws−1)
�.

(17)

Using the relation of (17) and noting that the symmetry of
M̃∗

s , i = 0, 1, · · ·, we obtain

‖M̃∗
s ‖2 = ‖M̃∗

s−1‖2 − 4μtr(P�
s−1Gs−1)

+μ2‖Gs−1Λ̃
2�X̃� + X̃Λ̃2G�

s−1‖2,
(18)

where Gs−1 = Ps−1 +Qs−1 +Ws−1. Observe that

‖Gs−1Λ̃
2�X̃� + X̃Λ̃2G�

s−1‖2

≤
(
‖Gs−1Λ̃

2�X̃�‖+ ‖X̃Λ̃2G�
s−1‖

)2
= 4‖Gs−1Λ̃

2�X̃�‖2 ≤ 4λmax(Λ̃
2�X̃�X̃Λ̃2)‖Gs−1‖2.

Thus, it follows from (18) that

‖M̃∗
s ‖2 ≤ ‖M̃∗

s−1‖2 − 4μtr(P�
s−1Gs−1)

+4μ2λmax(Λ̃
2�X̃�X̃Λ̃2)‖Gs−1‖2. (19)

Similarly, by (15) and (16) we can obtain

‖D̃∗
s‖2 ≤ ‖D̃∗

s−1‖2 − 4μtr(Q�
s−1Gs−1)

+ 4μ2λmax(Λ̃
�X̃�X̃Λ̃)‖Gs−1‖2, (20)

‖K̃∗
s ‖2 ≤ ‖K̃∗

s−1‖2 − 4μtr(W�
s−1Gs−1)

+ 4μ2λmax(X̃
�X̃)‖Gs−1‖2. (21)
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Therefore, from (19), (20) and (21) we have

‖M̃∗
s ‖2 + ‖D̃∗

s‖2 + ‖K̃∗
s ‖2

≤ ‖M̃∗
s−1‖2 + ‖D̃∗

s−1‖2 + ‖K̃∗
s−1‖2

− 4μ‖Gs−1‖2 + 4μ2λmax(Λ̃
2�X̃�X̃Λ̃2)‖Gs−1‖2

+ 4μ2λmax(Λ̃
�X̃�X̃Λ̃)‖Gs−1‖2

+ 4μ2λmax(X̃
�X̃)‖Gs−1‖2

= ‖M̃∗
s−1‖2 + ‖D̃∗

s−1‖2 + ‖K̃∗
s−1‖2

− 4μ
[
1− μ

(
λmax(Λ̃

2�X̃�X̃Λ̃2) + λmax(Λ̃
�X̃�X̃Λ̃)

+ λmax(X̃
�X̃)

)]
‖Gs−1‖2

= ‖M̃∗
0 ‖2 + ‖D̃∗

0‖2 + ‖K̃∗
0‖2

− 4μ
[
1− μ

(
λmax(Λ̃

2�X̃�X̃Λ̃2) + λmax(Λ̃
�X̃�X̃Λ̃)

+ λmax(X̃
�X̃)

)]∑s−1
l=0 ‖Gl‖2.

(22)
If the convergence factor μ is chosen to satisfy 0 < μ < μ0,
then the inequality of (22) implies that

4μ
[
1− μ

(
λmax(Λ̃

2�X̃�X̃Λ̃2) + λmax(Λ̃
�X̃�X̃Λ̃)

+λmax(X̃
�X̃)

)]∑s−1
l=0 ‖Gl‖2

≤ ‖M̃∗
0 ‖2 + ‖D̃∗

0‖2 + ‖K̃∗
0‖2 < ∞,

which implies that
∑∞

s=0 ‖Gs‖2 < ∞. Thus, we can conclude
that Gs → 0, as s → ∞, or equivalently,

M̃∗
s−1X̃Λ̃2 + D̃∗

s−1X̃Λ̃ + K̃∗
s−1X̃ → 0, as s → ∞.

Under the condition that the solution to (5) is unique, we can
deduce that M̃∗

s → 0, D̃∗
s → 0 and K̃∗

s → 0 as s → ∞. This
proves Theorem 1.

Now, assume that J ∈ Rn×p is an arbitrary matrix, then
we have ⎡

⎣ vec(JΛ̃2�X̃� + X̃Λ̃2J�)
vec(JΛ̃�X̃� + X̃Λ̃J�)
vec(JX̃� + X̃J�)

⎤
⎦

=

⎡
⎣ X̃Λ̃2 ⊗ In In ⊗ X̃Λ̃2

X̃Λ̃⊗ In In ⊗ X̃Λ̃

X̃ ⊗ In In ⊗ X̃

⎤
⎦[ vec(J)

vec(J�)

]

= H�
[

vec(J)
vec(J�)

]
∈ R(H�).

It is obvious that if we choose

M̃0 = JΛ̃2�X̃� + X̃Λ̃2J�,
D̃0 = JΛ̃�X̃T + X̃Λ̃J�,
K̃0 = JX̃� + X̃J�,

(23)

then all M̃s, D̃s and K̃s generated by (9), (10) and (11) satisfy⎡
⎣ vec(M̃s)

vec(D̃s)

vec(K̃s)

⎤
⎦

∈ R

([
Λ̃2�X̃� ⊗ In Λ̃�X̃� ⊗ In X̃� ⊗ In
In ⊗ Λ̃2�X̃� In ⊗ Λ̃�X̃� In ⊗ X̃�

]�)

= R(H�).

It follows from Lemma 2 that if we choose the initial
symmetric matrix triplet by (23), then the iterative solution

triplet (M̃s, D̃s, K̃s) obtained by the gradient iterative
algorithm (9), (10) and (11) converges to the unique minimum
Frobenius norm symmetric solution triplet (M̃∗, D̃∗, K̃∗).

In summary of above discussion, we have proved the
following result.

Theorem 2: Suppose that the condition (12) is satisfied. If
we choose the initial symmetric matrices by (23), where J ∈
Rn×p is an arbitrary matrix, or especially, M̃0 = 0, D̃0 = 0
and K̃0 = 0, then the iterative solution triplet (M̃s, D̃s, K̃s)
obtained by the gradient iterative algorithm (9), (10) and (11)
converges to the unique minimum Frobenius norm symmetric
solution triplet (M̃∗, D̃∗, K̃∗) of (5), and the unique solution
of Problem P is achieved and given by (6).

III. CONCLUDING REMARKS

A gradient based iterative algorithm has been developed
to incorporate measured experimental modal data into an
analytical finite element model with nonproportional damping,
such that the adjusted finite element model more closely
matches the experimental results. However, we should point
out that in all physical systems the matrices M,D and K
are often structured or parameterized, that is, the parameters
in the stiffness, damping and mass matrices are correlated,
and updating one parameter requires that others be updated
in a specific fashion to maintain the proper connectivities
in the structure. However, the method proposed can’t retain
the physical configuration of the analytical model. Can the
physical feasibility of the updated M,D and K be maintained?
This is a question that might be worthy of further study.
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