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Pattern Recognition Based Prosthesis Control for
Movement of Forearms Using Surface and
Intramuscular EMG Signals
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Abstract—Moyoelectric control system is the fundamental
component of modern prostheses, which uses the myoelectric signals
from an individual’s muscles to control the prosthesis movements.
The surface electromyogram signal (SEMG) being noninvasive has
been used as an input to prostheses controllers for many years.
Recent technological advances has led to the development of
implantable myoelectric sensors which enable the internal
myoelectric signal (MES) to be used as input to these prostheses
controllers. The intramuscular measurement can provide focal
recordings from deep muscles of the forearm and independent signals
relatively free of crosstalk thus allowing for more independent
control sites. However, little work has been done to compare the two
inputs. In this paper we have compared the classification accuracy of
six pattern recognition based myoelectric controllers which use
surface myoelectric signals recorded using untargeted (symmetric)
surface electrode arrays to the same controllers with multichannel
intramuscular myolectric signals from targeted intramuscular
electrodes as inputs. There was no significant enhancement in the
classification accuracy as a result of using the intramuscular EMG
measurement technique when compared to the results acquired using
the surface EMG measurement technique. Impressive classification
accuracy (99%) could be achieved by optimally selecting only five
channels of surface EMG.

Keywords—Discriminant ~ Locality ~ Preserving  Projections
(DLPP), myoelectric signal (MES), Sparse Principal Component
Analysis (SPCA), Time Frequency Representations (TFRs).

I. INTRODUCTION

URFACE ELECTROMYOGRAM (sEMG) signal is one

of the most significant biomedical signals. The use of
SEMG signal is simple, fast, and convenient; hence, widely
studied and applied in clinic. It is generated by muscular
contraction and can be recorded using surface electrodes. The
noninvasive surface electromyogram (SEMG) signal provides
information about neuromuscular activity and has become an
important and effective control input for powered prostheses
from last 40 years [1].

The loss of the human upper-limb, limits the ability of
amputees to interact with the real world. The life of the
amputees can be enhanced by restoring their ability to interact
with the outer world. This can be made possible by using
powered upper-limb prostheses. These prostheses derive their
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control command from myoelectric signals generated by the
human muscles [2]. Generated by the human muscles, these
muscles are used to derive control commands for powered
upper-limb prostheses.

Myoelectric control has been successfully utilized in
rehabilitation and human-computer interfaces [3], [4]. The
myoelectric signals acquired from healthy subjects can be
considered as an emulation of the amputee’s command signals
extending from the shoulder and intended for various hand
movements. Moreover, the rehabilitation experts have
suggested, for initial evaluation purposes, myoelectric signals
from the healthy hand should be considered even in the case of
the amputees [5]-[10]. Also, the myoelectric signals may
differ from one person to another as a result of different
physiological and recording conditions. The large sample sizes
do not mean that they will be more beneficial [11].

The paper is organized as: Section II describes the surface
and intramuscular datasets, the feature extraction, feature set
reduction, classification and post processing. Section III and
Section IV presents the experimental results and discussion
respectively and finally, conclusions are drawn in Section V.

II. METHODOLOGY

We propose a comparison between an EMG based forearm
prosthesis controller that employs an array of surface
electrodes placed on the human forearm to the system with
intramuscular electrodes. The goal is to investigate whether
the intramuscular myoelectric signal based prostheses
controllers outweighs the loss of the more global information
contained in the surface myoelectric signal. The classification
accuracy for identification of ten classes of forearm
movements is compared using various feature sets and
classifiers.

The block diagram of the proposed system is shown in Fig.
1. Raw surface EMG signals were preprocessed and feature
sets were extracted. Because of the large number of channels
dimensionality of the features being very high hence, the
dimensionality reduction techniques were employed to reduce
the feature size and transform into new feature subsets.
Suitable classifiers SVM ensemble, LDA, MLP and MKNN
(Modified kNN) were utilized for pattern recognition of the
signals from different classes of the forearm movements. To
enhance the accuracy we have incorporated majority voting as
post processing.
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Fig. 1 Block diagram of the Myoelectric signal classification system
for prosthesis control

A. Data Collection

The two datasets, first one represents a steady state Surface
EMG and the second one steady state Intramuscular EMG,
was acquired from the University of New Brunswick, Canada.
The original research group of these datasets is [12]. The
SEMG datasets were acquired using 16 surface electrodes
linear array with inter-electrode spacing of 2cm connected to
PRIMA EMG 16 amplifier configured to make differential
measurements between adjacent electrodes mounted around
the upper forearm as shown in Fig. 2. The IEMG datasets were
acquired, using 6 intramuscular electrodes consisted of 10cm
of insulated 44guage nickel alloy wires in a paired
configuration which had an inter-electrode spacing of 1mm
and were housed in a 27guage cannula. Each session of the
datasets consisted of two trials of each motion. Six normally
limbed, healthy male subjects (abbreviated as ‘AW’, ‘KS’,
‘LH’, ‘MW’, ‘SM’ and ‘WM’) between the ages of 23 and
30were prompted to complete medium force isometric
contractions of 5 seconds duration followed by a brief rest
period. Each channel was pre-filtered between 10-500 Hz
using a 4™ order Bessel band pass filter with a gain of 2000
and a CMRR greater than 96dB/channel. The capabilities of
feature sets, dimensionality reduction techniques, and
classifiers will be explored in detail for the generalization of
the prosthetic control problem. Each record is of 256msec in
duration (256 points sampled at 1024 Hz).There are ten
motions associated with three degree of freedom (DOF’s) of
the wrist, two different hand grips and a rest state. Fig. 2
shows the placement of electrodes on the forearm.

The IEMG datasets were acquired, using 6 intramuscular
electrodes consisted of 10cm of insulated 44guage nickel alloy
wires in a paired configuration which had an inter-electrode
spacing of 1mm and were housed in a 27guage cannula. Each
session of the datasets consisted of two trials of each motion.
Six normally limbed, healthy male subjects between the ages
of 23 and 30were prompted to complete medium force
isometric contractions of 5 seconds duration followed by a
brief rest period. Each channel was pre-filtered between 10-
3000 Hz using a 4™ order Bessel band pass filter with a gain of
2000 and a CMRR greater than 100 dB. Each record is of
256msec in duration (256 points sampled at 1024 Hz).There
are ten motions associated with three degree of freedom
(DOF’s) of the wrist, two different hand grips and a rest state.
Fig. 3 shows the ten classes of movement of the forearm. The
classes are same for both the datasets i.e. SEMG and IEMG.
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Fig. 2 A cross-section of the upper forearm showing the surface
electrodes location and internal control sites on upper forearm [12]
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Fig. 3 Different movement classes considered in this paper [12]

B. Feature Extraction

Features are wused to model and analyze raw
electromyogram signal, hence success of any pattern
recognition problem depends almost entirely on the selection
and extraction of features. The classification performance is
more profoundly affected by the choice of feature set [13].
Features are usually computed from the preprocessed
myoelectric signal in time, frequency and time-frequency
domain. Either a disjoint or an overlapped windowing scheme
can be utilized. Better classification performance can be
achieved using the overlapped windowing scheme at the cost
of more computational complexity in the training and the
testing phase for certain classifiers [14]. Therefore, the size of
the window and its increment matters most.

The feature set selected should be such that it is capable of
capturing the characteristics of the MES for different motions.
A tradeoff in classification accuracy and computational
complexity does exist. In our work, features in the time,
frequency, and time-frequency domains have been extracted
using sliding (overlapped) window techniques.

Overlapping windows of 256msec were analyzed. The
windows were spaced 128msec and 32msec apart for training
data and testing data respectively. To improve the accuracy,
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the transitional data 256msec before or after a change in limb
motion was removed from the training set.

Four different feature sets were extracted from the dataset
to perform the experiments for classification of forearm
movements. The first feature set consisted of the short time
frequency transform (STFT) here the signal was divided into
short segments and Fourier transform applied. 10 numbers of
segments with an overlap rate of 12% were utilized. In
combination with STFT feature, autoregressive (TVAR)
model parameters of 6" order were used in the same feature
set termed as TD2. The second one consisted of discrete
wavelet transform (DWT). The EMG records were
decomposed using a Symmlet family of wavelets with four
levels of decomposition. This feature set is termed as the
DWT feature set. The third one, WPT feature set is of wavelet
packet transform (WPT). Four levels of decomposition using a
Symmlet family of wavelets were used to decompose the
signal. The fourth and the last one TDI1 feature set is a
combination of time Domain and frequency domain features.
The same four feature sets were also extracted from IEMG,
except that it has lower dimensions as the number of channel
is reduced from 16 to 6 only.

C. Feature Reduction

It is fairly certain that the success of a chosen feature set
depends upon the proper size of the feature set. In many
pattern recognition applications, a large number of features are
extracted in order to ensure an accurate classification of each
segment of the signal into one of a predefined set of classes.
One possible example is the utilization of the time-frequency
analysis methods, which proved to be successful in the
analysis of myoelectric signals. Such methods usually end up
with extracting a large number of features. Hence, there is
need of feature selection and projection technique to have the
optimal size of the feature set. Thus, dimensionality reduction
plays a vital role in the pattern classification.

We had used three different feature selection and projection
techniques: Orthogonal Linear Discriminant Analysis
(OLDA), Discriminant Locality Preserving Projections
(DLPP), and Sparse Principal component analysis (SPCA).

D. Classification

Myoelectric signal classification for prosthetic control is a
difficult problem. A suitable classifier must be accurate
enough to generalize well the novel data and capable of being
optimized to suit the unique patterns generated by individual
users. We have utilized four different classifiers; SVM
ensemble, MLP, LDA and Modified kNN (MkKNN) for the
prosthesis control.

SVM Ensemble

In 1995, Krogh [15] pointed out that the generalization error
of collection is equal to average generalization error of
individual minus the average differences of individual.

In this paper, we have used an ensemble algorithm based on
bagging [16] and culture algorithm [17]. The base learners of
high difference are generated by bagging method which is a
re-sampling training data technology. Some base learners with

high accuracy and large differences are selected by CA to
ensemble. The method uses multiple versions of a training set
by using the bootstrap, i.e. sampling with replacement. The
outputs of the models are combined by voting to create a
single output.

Using a base learning algorithm, bagging trains a number of
base learners each from a different bootstrap sample. After
obtaining the base learners, bagging combines them by
majority voting and the most-voted class is predicted. The
pseudo-code of Bagging is as:

Data set D = {(x1, y1), (x2, y2),...(xn, yn),};

Base learning algorithm L;

Number of learning rounds T

Process: for t=1,...,T

Dt=Bootstrap (D); % Generate a bootstrap sample from D

Ft=L(Dt) % Train a base learner ht from the bootstrap sample

end

Output:f(x)=argmaxy€YY7_; 1 (y= fi(x)) % the value of 1(a) is 1 if a
is true and 0 otherwise

In a cultural algorithm, the idea is to add to the current
knowledge the new knowledge acquired by the accepted
individuals. The function to generate offspring used in
evolutionary programming is modified so that it includes the
influence of the belief space in the generation of offspring
[18].

Modified kNN

Modified kNN or weighted kNN is the modified version of
kNN method which uses the k nearest neighbors, regardless of
their classes. It uses weighted votes from each sample rather
than a simple majority or plurality voting rule. Each of the k
samples is given a weighted vote that is usually equal to some
decreasing function of its distance from the unknown sample.
These weighted votes are then summed for each class, and the
class with the largest total vote is chosen. In this algorithm
[19], firstly every training sample is validated. The validity of
every point in training set is computed using (1):

Validity(x) = 7SI, S(IbICOIDL(N (x))) 6

where H is the number of considered neighbors and Ibl(x)
returns the true class label of the sample x. Nj(x) stands for the
i nearest neighbor of the point x. The function S in (2)
defines the similarity between the point x and the i nearest

neighbor.

s@h = {5 22y) @

In the last, the weight of each neighbor sample is derived
according to (3):

N e 1

W (i) = Validity(i) x e 3)
where W(i) and Validity(i) stand for the weight and the
validity of the i nearest sample in the train set. In addition, de
is Euclidean distance and o is a smoothing regulator and here
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it is selected as a = 0.5. This technique has the effect of giving
greater importance to the reference samples that have greater
validity and closeness to the test samples. This distance
weighted kNN technique is very similar to the window

technique for estimating density functions.

E. Post Processing

Post processing techniques are usually utilized after
classification to prevent overwhelming the prosthetic
controller with varying classification decisions. By eliminating
spurious misclassification, the classifier performance is
enhanced [5]. The EMG classification accuracy results were
enhanced using a majority vote (MV) technique. In a MV
scheme, an acceptable delay of 256msec and an overlapped
windowing increment in the test session is used. The number
of decisions used in the majority vote is determined by the
processing time Tprocess (time consumed during feature
extraction, projection and classification) and the acceptable
delay Taqelay (the response time of the control system). We can
use the previous decisions, the current decision, and the future
decisions to form the MV [5].

III. RESULTS

To have a fair comparison with the original research work
of this dataset [15], the same testing schemes is utilized here.
The trial one dataset was used to train each of the four
classifiers and trial two dataset to test and hence to determine
the classification accuracy of the control scheme. Similar to
the original research Majority voting was used after
classification. The decisions comprised of the current window,
the previous eight windows, and the next eight windows.
Thus, 17 decisions were used in a majority vote while keeping
the user perceived delay less than 300 msec. In additions to
this, the decisions for periods between class transitions were
removed.

Feature subsets were selected using JBB, LDB, and OWP,
for the above analysis windows length and increment. Each of
the trials one and two have more than 2000 patterns
separately. Four different classifiers: the SVM ensemble
classifier with 10 linecar SVMs, Modified kNN (MKNN)
classifier simple and computationally effective, MLP classifier
using back propagation with two hidden layers having 8 nodes
in each layer and LDA classifier (used in the original research
[12]) which is a little bit computationally expensive but
provides a deterministic solution. The classification accuracies
of the features extracted by the different methods using SVM
ensemble, MLP, MKNN and LDA were computed. Fig. 4
shows the average classification accuracy achieved across six
subjects using SVM ensemble. Similar results were achieved
for the other three classifiers.

The total accuracy across all subjects achieved by the OWP
is higher than that achieved by the JBB and the LDB. Methods
like JBB and LDB require much more features to achieve
comparable results.

Table I shows the mean classification accuracy results along
with the standard error for all four classifiers. The results in

Table I clearly indicate the significant performance of the
OWP method; this is because it extracts the energy of wavelet
coefficients as features in comparison to the other techniques.
We also investigated that if by adding more number of
features will improve the classification performance or not.
The feature sets TD1, TD2, DWT and WPT were utilised.
Because of the large number (16) of channels, the resultant
feature vector dimensionality was very large. Thus, feature
sets of lower dimensions were selected using feature
projection techniques SPCA, OLDA and DLPP.

Average Accuracy of SVM ensemble classifier
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Fig. 4 Tradeoff between the number of features retained and
classification accuracy

TABLEI
CLASSIFICATION ACCURACY WITH STANDARD ERROR
Classifiers OWP LDB JBB
SVM ensemble  98.2312+2.0435 94.2654+4.3478 92.1247+3.6232

LDA 97.1694+3.2155 92.2983+5.7971 85.0235+4.1592
MKNN 92.9658+3.2344 89.0259+6.5217 83.1239+7.2464
MLP 93.8784+3.3676 90.3691+4.1682 84.2657+2.6957
100-----—-----—-—--—--—-- o -
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Fig. 5 Classification accuracies achieved across six subjects
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We had used the same four classifiers mentioned above.
The results obtained with all the four features sets were
iterated for 10 times each and the average accuracy across all
the feature sets was computed. The average classification
accuracies with standard deviation as error bars for the SVM
ensemble classifier is shown in Fig. 5.

In the original research for this dataset collected by [12], the
optimal channel subsets were investigated to recognize the
regions of the forearm where the channels were located. A
Brute-force method was employed and in this method each
and every possible combination of channels was processed
and the channels which provided the highest classification
accuracy were selected as the channel subset. Two features
sets TD (TD1 and TD2 feature sets combined) and WT (DWT

and WPT feature sets combined) were utilized. The brute-
force method was used to search for the best combinations of
2, 3, 4 and 5 channels that best interact together. Table II
shows the subject and its corresponding classification
accuracy. The results show that with the use of only five
channels, very high classification accuracy is achieved, for the
TD feature set it is 99.40% and for WT feature set it is
99.72%. The result suggests that surface electrodes placed
over the extensors/supinator, flexor carpi ulnaris, and flexor
digitorum subliminus are essential in providing good
classification accuracy and five channels are sufficient. With
different feature sets and classifiers, we could achieve results
similar to the results of the original research with different
feature sets and classifiers.

TABLEII
CHANNEL ACCURACIES FOR DIFFERENT FEATURE SETS AND DIFFERENT NUMBER OF CHANNELS FOR SVM ENSEMBLE CLASSIFIER
Feature sets TD WT
Number of channels Number of channels
Subjects 2 3 4 5 2 3 4 5
AW 96.4857 97.9710 98.2373 99.2671 97.7763 97.8729 98.1906 99.8986
LH 96.8623 97.6232 98.6957 100 97.2419 98.3333 98.6344 99.3478
KS 95.6232 98.1867 97.9894 100 96.4214 98.3963 100 99.0725
MW 95.6646 98.6232 99.0725 99.0911 98.6562 97.6874 98.9258 100
SM 95. 7489 98.1449 100 100 96.4866 97.2464 98.5308 100
WM 96.2155 98.4884 99.5217 98.0435 97.4048 96.7971 98.6957 100

Fig. 6 shows the classification accuracy for each of the

channels with TD feature sets using SVM ensemble classifier.
Similar results were obtained for TD and WT feature sets and
other classifiers. The accuracy increases as the number of
channels is increased but after channel eight, there is gradual
decrease in the classification accuracy irrespective of the
classifiers. Thus, we can say that eight numbers of channels
are sufficient, in fact is difficult to place more number of
channels on the amputees forearm.
The influence of different number of channels on LDA classifier

=
=

©
&

o
S

oo
&K

o
=

—~
>

Classification A ccuracy percentage

Number of Channels

Fig. 6 Classification accuracy for SVM ensemble classifier as
channels is added into channel subsets

Seven different feature sets: TD, TD plus a sixth order AR
model (TDAR), a sixth order AR model (AR) alone, STFT,
FD, DWT and WPT feature sets were used. The same

classifiers were investigated. Fig. 7 depicts the result of a
direct comparison of seven feature sets; WPT has been shown
to provide the highest classification accuracy. Although the
result shown in Fig. 7 was created specifically by considering
SVM ensemble classifier, the results hold true for all the other
three classifiers: MLP, LDA, and MKNN.

Classiifcation accuracy of different feature sets for SVM ensemble classifier
i i i i i i |
100-+-----9----- (e [ e }L -

| | —
| N
BRSNS
95 L - - — 4 ———] [ A I

WOFr-———q-——--

3]

T
|
|
|
85 - - -4 - - - - - - - - — it I
|
|
|
|

Classification Accuracy percentage

I I I I I

I I I I I

I I I I I

| I | | I

80 I I I I I I I

I I I I I I I

I I I I I I I

I I I I I I I
Brr———=7-—---- - [l L B -

I I I I I I I

I I I I I I I

I I I I I I I

70 L L L L L L L
FD STFT DWT TD AR TDAR WPT

Different feature sets

Fig. 7 The classification performance of a ten-class control problem
averaged over six normally limbed subjects

A.Comparison between SEMG and IEMG Signals
Classification Accuracy

Four feature set combinations were used to make the
comparison between the surface and intramuscular EMG
signals as inputs. The TD, TD plus a sixth order AR model
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(TDAR), a sixth order AR model (AR) alone, STFT feature
sets were used. The classifiers investigated were a SVM
ensemble, LDA and MLP with 12 hidden layer nodes (similar
to [12]) which was trained using the back propagation
algorithm. LDA and MLP classifiers were also used in the
original research by [12]. For each combination, data windows
of 256msec were used to extract features. The 256msec
window was incremented by 32msec, producing a decision at
32msec intervals. These decisions were smoothed by
determining the majority vote of the 17decisions: the current
window, the next eight windows, and the previous eight
windows, maintaining the user perceived delay less than 300
msec. We have used the same techniques as the original
researcher [12] to have a fair comparison. The SPCA was used
for feature projection which involves PCA as the initial step.
The first 40 principal components of the feature sets were used
in processing similar to [12]. The trial one of the data set was
used to train the classifiers and the trial two was tested to
evaluate the classification accuracy of the control scheme.

Direct comparison of measurement techniques
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Fig. 8 The average classification accuracy and standard deviation for
the twelve different control schemes

Fig. 8 displays the average classification accuracy and
standard deviation across twelve different feature set/classifier
combinations of six subjects. The classification accuracy is
almost same for both the signals, SEMG and IEMG. We
applied a paired T-test to test whether there is any significant
difference in classification accuracy resulting from the
different measurement techniques for each of the control
schemes mentioned in the paper. It was found that there was
no significant difference between the measurement
techniques; each control scheme yields very high classification
accuracy irrespective of the classifiers and the different feature
sets also mattered a little. We achieved the accuracy greater
than 99% with the TDAR feature set and SVM ensemble
classifier whereas the highest accuracy achieved in the
original research [12] is equal to 98% with TDAR and LDA.

Thus, the surface EMG (SEMG) signals are as much accurate
as the intramuscular EMG (IEMG) signals except more
number of electrodes was utilized in case of SEMG to carry
out the same processes accuracy. In an amputated arm, it is
difficult to place large number of electrodes, but we have seen
that in our experiments with SEMG dataset only 5 numbers of
electrodes out of 15 were sufficient to achieve the highest
classification accuracy and as the number of channel
combinations was increased the classification accuracy
decreased. Similar was the observation with the IEMG signals
here we could achieve the highest classification accuracy with
only four number of electrodes. There is not any significant
difference in the classification accuracy attained using the two
signals i.e. SEMG and IEMG implemented with the same
techniques of feature projection and classification.

IV. DISCUSSION

The results of the direct comparison between the surface
and intramuscular measurement techniques suggest that the
benefits: localized signal, very little muscle crosstalk
associated with the intramuscular myoelectric signal do not
outweigh the more global information contained in the surface
myoelectric signal for pattern recognition-based myoelectric
control. From Fig. 6, it is remarkable that there is a slight drop
in classification accuracy when increasing from 8-channel
optimal subset to 15 channels. This could be because of some
loss of useful information after adding 14 or 15 channels. This
loss of information could be because of PCA and thereafter
SPCA, as we had chosen only 40 components. Using more
principal components increases the complexity of the feature
set. In addition, the increased dimensionality of the input
space would require more training data to provide a thick
decision boundary to overcome the curse of dimensionality
and may yield high classification accuracy. Addition of more
channels to the data changes the feature cluster to a complex
shape hence the performance of the PCA or SPCA will be
degraded. It is necessitated that more research needs to be
conducted to determine the cause of classification degradation
when using a higher number of channels. Fig. 8 shows that the
classification accuracy remains high and almost same for
various control schemes for both the signals. The inference is
that pattern recognition-based myoelectric control systems can
ease muscle crosstalk and that they probably take advantage of
spatial-temporal information between channels contained in
the crosstalk for classification purposes. Therefore, for pattern
recognition-based myoelectric control, strictly independent
control sites are not essential. Though we had utilized
information from the 15 channels of surface MES data, only
five channels were sufficient to have an excellent pattern
recognition-based myoelectric control systems but the
channels must be chosen carefully Deep muscles are not
clearly available through the surface EMG hence from control
perspective, it may be one advantage of intramuscular
electrodes where they are accessible.
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V. CONCLUSION

The primary goal of this paper is to compare the pattern
recognition  classification accuracies using  different
measurement techniques. From both of the measurement
techniques we achieved almost same classification accuracy, a
little bit higher with surface MES with different control
schemes; hence Surface MES can be successfully used to
drive the prosthesis controller. These intelligent pattern
recognition models will enhance the life of amputees and help
them to restore their ability of interacting with the outer world.

The classification of myoelectric signal depends on the
representation of the signals. The classifier exhibited very
good accuracy with TFRs features but the way in which
feature sets were projected mattered most. The performance
was more accurate with five channels with SEMG signals and
four channels with IEMG signals and it started deteriorating as
more number of channels was introduced. In our work, the
individual SVMs were aggregated to make a collective
decision which outperformed the other classifiers and the use
of majority voting enhanced the result. The highest accuracy
was obtained with WPT feature sets and then TDAR feature
set, but the performance of other features sets was close to the
TDAR and WPT feature sets. With MKNN also, we achieved
results comparable to the other classifiers which has an added
advantage of less computational cost and simplicity.
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