International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:9, No:10, 2015

Computing Visibility Subsets in an Orthogonal
Polyhedron

Jefri Marzal, Hong Xie, Chun Che Fung

Abstract—Visibility problems are central to many computational
geometry applications. One of the typical visibility problems is
computing the view from a given point. In this paper, a linear time
procedure is proposed to compute the visibility subsets from a corner
of a rectangular prism in an orthogonal polyhedron. The proposed
algorithm could be useful to solve classic 3D problems.

Keywords—Visibility, rectangular prism, orthogonal polyhedron.

1. INTRODUCTION

ISIBILITY is an important concept in computational

geometry. Problems involving the visibility of objects
have arisen in many fields, such as in computer graphics,
VLSI layout, motion planning, and surveillance. Therefore,
any improvement to visibility concept will have contributions
to those fields and relevant applications. Typical visibility
problems include computing the view from a given point,
determining whether two objects partially see each other,
mutual visibility of objects for lighting, and computing the
umbra and penumbra [1]. In a given scene, two points are
visible if the segment joining them does not intersect any
obstacle in the scene. The study of visibility is thus intimately
related to the study of free line segment in a scene. Visibility
also can be defined in terms of graph, in which the nodes are
the vertices of the scene, and an arc joins two vertices p and q
if they are mutually visible [2].

The computational geometry research community has
shown great interest in 2D visibility. For example, Pocchiola
and Vegter provided a powerful and elegant framework to
comprehend visibility properties in the plane, where visibility
problems and coherence are expressed naturally [3].
Frequently the underlying structure of the visibilities is
critical, and one types of structure for visibility is a graph.
Gosh and Mount presented an optimal Ok + n log n)
algorithm for computing the visibility graph of a polygonal
scene, where n is the number of vertices and K is the number of
arch of the visibility graph [4].

Unfortunately, theoretical literature is limited when 3D
visibility is concerned. Researchers typically study the
theoretical complexity of problems such as view computation
or ray-shooting. The results available are often reductions of
algorithms. Even in theory, the approach is mostly
constructive and not analytical. Bygi and Ghodsi explained

J. Marzal is with the School of Education, University of Jambi, Indonesia
(e-mail: jefri_marzal@unja.ac.id).

H. Xie and C. Fung are with the School of Engineering and Information
Technology, =~ Murdoch University, =~ Western Australia ~ (e-mail:
H.Xie@murdoch.edu.au, 1.fung@murdoch.edu.au).

some reasons for this condition, and they tried to define
geometry structure in 3D space [2].

This paper is concerned about a variant of the visibility
problem that is defined as follows: let an orthogonal
polyhedron is decomposed into a set of rectangular prisms 77,
and let ¢ be a corner of a rectangular prism, then what is a
subset of /7that is totally visible to c?

In this study, a procedure is developed to compute the
visibility subset from a corner point as defined above.
Furthermore, the time complexity for executing the procedure
is calculated, and it is found that the procedure works in linear
time.

II. DEFINITION AND TERMINOLOGY

A polyhedral surface is defined as a finite, connected set of
plane polygons, such that every edge of each polygon belongs
to just one other polygon, with the proviso that the polygons
surrounding each vertex form a single circuit (to exclude
anomalies such as two pyramids with a common apex) [S]. An
edge that belongs to exactly two polygons is called two-
manifold edge, and a vertex that is the apex of only one cone
of polygons is called a two manifold vertex [6]. A cone is
defined as a three-dimensional geometric shape that tapers
smoothly from a base to a point called the apex. Hence, a
polyhedral surface contains connected polygons that have only
two-manifold edge and two-manifold vertex, and this kind of
boundary is called a two-manifold boundary.

The polygons in a polyhedral surface are called faces, and
the faces do not cross each other. A polyhedron is defined as a
closed subset of a 3-dimensional Euclidean space whose
boundary can be expressed as a polyhedral surface [5].

Faces, edges and vertices are important elements of a
surface of a polyhedron. Their definitions are essential. A face
is a polygon in a surface of a polyhedron. An edge is a line
segment on its boundary where two or more faces meet. A
vertex is a point on its boundary three or more edges meet [7].

A boundary of a polyhedron divides the space into two
regions, one of which, called the interior, is finite. A point of a
polyhedron is a point either on the boundary, or in the interior,
of the polyhedron. A point on the boundary, or boundary point
of a polyhedron, is a point on the boundary of the polyhedron.
An interior point of a polyhedron is a point in the interior of
the polyhedron [5].

One of the most widely studied classes of polyhedron is the
orthogonal polyhedron. Tang defined an orthogonal
polyhedron as a polyhedron in which every edge is parallel to
one of the three orthogonal directions [8]. An orthogonal
polyhedron is also called isothetic polyhedron.

632

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:9, No:10, 2015

To facilitate discussion in visibility subset, the following
terms, some of which were introduced in [9], are defined.

e Definition 1. Two points x and y in an orthogonal
polyhedron are said to be visible from each other if and
only if the segment xy does not intersect the boundary of
the orthogonal polyhedron.

e Definition 2. Let ¢ be a point of an orthogonal
polyhedron, the visibility region of ¢, denoted Vr(c), is the
set of points of the orthogonal polyhedron that are visible
from c.

e Definition 3. A piece p of an orthogonal polyhedron is
said to be totally visible from c if every point of p is
visible from ¢ (i.e., p < Vr(c). p is said to be partially
visible from c if some, but not all, points of p is visible
from c.

Generally, there are two type of data structures in polyhedra
representation: edge-based data structure and vertex based
data structure [7]. Aquilera and Ayala represented an
orthogonal polyhedra by using extreme vertices only [10].
This method requires less number of vertices compare with
other methods that involved all vertices. A brief review of
some common features of this method is given below.

As stated by Juan-Arinyo [11], the number of incident
edges at any vertex on an orthogonal polyhedron can be three,
four, and six. They are labeled as V3, V4 and V6 to represent
the degree of the vertex. V3 means three edges meet at vertex
the V, and similar meanings exist for V4 and V6 vertices.

A brink is the longest uninterrupted line segment, built out
of a sequence of collinear and contiguous two-manifold edges
of an orthogonal polyhedron OP. Every edge belongs to a
brink and each brink has at least one edge. A brink may be
contain V3, V4 and V6, but the two ending vertices of a brink
is V3. A V4 and V6 may only be an intermediate vertex of a
brink. The ending vertices of all brinks in OP are called
extreme vertices.

Extreme Vertices Model (EVM) is defined as a model that
only stores all extreme vertices of an orthogonal polyhedron.
The vertices of OP is accessed by ABC-Sorted EVM in which
its extreme vertices are sorted first by coordinate A, then by B,
and then by C [10].

In ABC-sorted EV model, vertices are arranged in a set of
brinks. The k™ C-brinks has Vi, = Vo as the beginning vertices
and Ve = Vy as the ending vertices, for k=1, 2,.. be two
consecutive vertices (C-brink refers to those brinks parallel to
the C-axis).

In an ABC-sorted EVM array, the sequence of vertices can
be viewed as a list of pairs of vertices starting from the first
vertex in the array. The two vertices in each pair have the
same coordinate values in the A-axis and the B-axis, but
different coordinate values in the C-axis. These two vertices
are actually the two end vertices of the same brink that parallel
to the C-axis. Furthermore, the set of pairs of vertices in this
ABC-sorted EVM array represents all brinks in the orthogonal
polyhedron that are parallel to the C-axis.

The above method can be used to find all brinks that are
parallel to Z-axis by sorting the EVM array into XYZ-sorted.
The set of brinks parallel to Y-axis can be obtained by sorting

the EVM array into XZY-sorted. Similarly the set of brinks
parallel to the X-axis can be obtained by sorting the EVM
array into YZX-sorted.

As the size of any ABC-sorted EVM array is same as that of
the original EVM array, it is obvious that the number of brinks
in an orthogonal polyhedron that are parallel to each of the
three axes is the same, i.e., it is always a half of the extreme
vertices.

Fig. 1 (a) is an example of a solid orthogonal polyhedron
object. This object is represented by coordinates of its extreme
vertices that may be inputted in any order, and the object can
be reconstructed perfectly by the above EVM method. Fig. 1
(b) shows the order of the XYZ-sorted extreme vertices that
were sorted by the X-coordinate first, followed by Y-
coordinate, and then followed by z-coordinate. By connecting
the two extreme vertices in each pair, all vertical brinks (hence
all vertical edges) would be reconstructed. The same
procedure can be used to reconstruct all horizontal edges
(parallel to the X-axis) and all back-front edges (parallel to Y-
axis).

a b

Fig. 1 Reconstruction of Orthogonal Polyhedron

II1. VISIBILITY IN AN ORTHOGONAL POLYHEDRON

Suppose a set of rectangular prism IT is decomposed from
an orthogonal polyhedron by an algorithm that was proposed
in [12]. The purpose of computing the visibility subsets is to
construct a collection non empty sets S = { §; | j=1,...k },
where §; = {p| p €Il and p < Vr(c))} is the visibility subset
for corner point ¢j. Fig. 2 depicts an orthogonal polyhedron
which is partitioned into a set of rectangular prisms I1. After
the partitioning, Vv; is a vertex, and Uj is an arbitrary point of
the polyhedron. Both of v; and u; are also corner points of the
same rectangular prism. A jth corner point is symbolized as C;.
In addition, p; and p, are pieces in I1.

The procedure of computing the visibility subsets from a
corner point of a rectangular prism rests on the following
observation: i) each rectangular prism has six faces. These six
faces can be divided into two types — a Type I face is also a
face of the original orthogonal polyhedron, and a Type II face
is completely made up of the interior points of the original
orthogonal polyhedron except possibly at the edges of the
face. If an edge of a face is also an edge on the original
orthogonal polyhedron, the edge is said to be Type I edge.
Otherwise the edge would consist of only interior points of the
original orthogonal polyhedron and is called Type II edge. ii)

633

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:9, No:10, 2015

for a given view point, a rectangular prism (the first
rectangular prism) is totally visible from the view point if and
only if there exists no other rectangular prism with a Type I
face intersecting the line connecting the view point and a point
in the first rectangular prism.

V2
1
Vg ’
1
1
! |
P2 b2 —
Uy > Y7 : -7
1
N G
V])__ RS R
V3

Fig. 2 Partitioning on an Orthogonal Polyhedron

for(i=1tok) {
S =4
for(j=1tom) {
If (c; is a corner point of rp;) {
Si=S + {rp};

continue;

¥
blocked = false;
for (I=1tom){
it (11=j)
blocked = IsViewBlocked (c;, rp;, rp));
if (‘blocked)
break;

}
if ('not blocked)
S;=5 + {rp};

Fig. 3 Algorithm for Constructing Visibility Subsets

The algorithm in Fig. 3 assumes the availability of a corner
point ¢; (i=1, 2, . . ., k) from m rectangular prisms rp; (j=1, 2,
..., M) which are resulted from the partition of an orthogonal
polyhedron. Note that some corner points are shared by more
than one rectangular prism, therefore k < 8m. It attempts to
construct k visibility subsets S; (i=1, 2, . . ., k). For each corner
point, it checks each rectangular prism to see whether it is
completely visible from that corner point. If every point in the
rectangular prism is visible from the corner point, the
rectangular prism is said to be completely visible from the
corner point. Otherwise, it is said to be (fully or partially)
blocked from the corner point. At the end of the outmost loop,
S; would contain all rectangular prisms that are completely

visible from corner point C;. Fig. 3 illustrates the detailed
algorithm,.

The function IsViewBlocked, as shown in Fig. 4, takes a
corner point C;, and two rectangular prisms, rp; and rp;. It
returns true if the view from ¢; to rp; is blocked in anyway by
the presence of rp,. Otherwise, it returns false.

For any given rectangular prism rp; and a point ¢; lying
outside of rp;, there are between one and three faces of rp; that
are visible from c;, depending on the position of the point
relative to the rectangular prism. These visible faces and the
corner point can form up to three rectangular pyramids, with
each visible face at the base and the corner point at its apex. If
another rectangular prism rp; blocks the view from c; to rp;,
whether fully or partially, it must contain at least one Type I
face or Type I edge. Otherwise the rectangular prism would
consist of only interior points of the original orthogonal
polyhedron, it would be “transparent”.

Rectangular prism rp; blocks the view from c; to rp; if and
only if rp; contains a Type I face or Type I edge that intersects
with one of the aforementioned rectangular pyramids. To see
why this is a necessary condition, let’s assume that rp; does
block the view from C; to rp;. This means that there exists at
least one point S in rp; that is blocked by rp,. The line
connecting C; and S would intersect with one or more points of
rp;. One of these intersection points must lie on a Type I face
or Type I edge, because otherwise all intersection points
would be interior points of the original orthogonal polyhedron
which are transparent and would not block the view. This
proves that if rp; blocks the view from c; to rp; then rp, must
contain a Type I face or Type I edge that intersects with one of
the rectangular pyramids. To see that the condition is also
sufficient, we only need to take any intersection point S
between the Type I face of rp; and one of the rectangular
pyramids. Since S lies in the pyramid, the line from c;to S can
be extended to the base of the pyramid, ending at point t. It is
clear that point t on a face of rp; is not visible from c; because
the sight is blocked by point s which is on a Type I face or
Type I edge of rp,. This means that rp, blocks the view from c;
torp;.

To determine whether a rectangle and a rectangular pyramid
intersect with each other, one can check whether any of the
four corner points of the rectangle lies in the pyramid. If one is
found to be inside the pyramid, the rectangle and pyramid
intersect with each other. If none of the corner points lies
inside the pyramid, we still need to consider the case when the
rectangle cuts through the pyramid however all corner points
are outside of the pyramid. This can be easily verified by
taking each of the eight edges of the pyramid and see whether
any one of the edge intersects with rectangle. If one edge is
found be intersecting with the rectangle, the pyramid and the
rectangle intersect with each other. Otherwise, they do not
intersect with each other.

634

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:9, No:10, 2015

function IsViewBlocked (c;, rp;, rp))
{

var edge, base, rectangle, pyramid;

if (base is a Type I face)
return true;

for (rectangle = each face of rp;) {

else

i

return false;

i

if (rectangle is a Type I face)
if (rectangle intersects with pyramid){
return true;

for (base = each of the rectangular faces of rp; that are visible from point ¢;) {

pyramid = the rectangular pyramid formed by point ¢; and rectangle base;

return false;

for (edge = each of rectangle’s Type I edges) {
if (edge intersects with pyramid)

return true;

Fig. 4.Function IsViewBlocked for Blocking Determination

It is relatively easy to determine whether an edge intersects
with a rectangular pyramid. Firstly one can check each of the
two end points of the edge. If at least one of the end points is
inside the pyramid, the edge must intersect with the pyramid.
If both end points of the edge lie outside of the pyramid, there
is still possibility that the edge intersects with the pyramid. It
is noted that in such a scenario, the edge intersects with the
pyramid if and only if the edge intersects with one of the five
faces of the pyramid. Hence the intersection can be determined
by checking whether the face of the pyramid intersect with the
edge.

[V.DIiscUsSION

The time cost of the guard placement algorithm is
calculated as following. Visibility subsets can be constructed
in O(m®) time as shown in the previous section. It can be
establish that m < n’, hence the visibility subset can be
constructed in polynomial time in n. This algorithm could be
useful to solve some classic 3D problems such as the art
gallery problem.

REFERENCES

[1] F.d. Durand, et al., "The 3D Visibility Complex," ACM Transactions on
Graphics, vol. 21, pp. 176 - 206, 2002.

[2] M. N. Bygi and M. Ghodsi, "3D Visibility Graph," presented at the
Computational Science and its Applications, Kuala Lampur, 2007.

[3] M. Pocchiola and G. Vegter, "Topologically sweeping visibility
complexes via pseudotriangulations," Discrete & Computational
Geometry, vol. 16, pp. 419-453, 1996.

[4] S. K. Ghosh and D. Mount, "An output sensitive algorithm for
computing visibility graphs," SIAM Journal Computing, vol. 20, pp.
888-910, 1991.

[5] H.S. M. Coxeter, Regular polytopes. New York: Dover Publications,
1973.

[6] J. R. Rossignac and A. A. G. Requicha, "Construcitve Non-Regularized
Geometry," Computer - Aided Design, vol. 23, pp. 21-32, 1991.

[7] T. Biedl and B. Genc, "Reconstructing orthogonal polyhedra from
putative vertex sets," technical reports, 2007.

(8]

91

[10]

(1]

[12]

K. Tang and T. C. Woo, "Algorithmic aspects of alternating sum of
volumes. Part 1: Data structure and difference operation," Computer-
Aided Design, vol. 23, pp. 357-366, June 1991.

A. P. Tomas, et al., "On visibility problems in the plane - solving
minimum vertex guard problems by successive approximation," in the
9th Int. Symp. on Artif. Intel. and Math., 2006.

A. Aquilera and D. Ayala, "Solving point and plane vs orthogonal
polyhedra using the extreme vertices model (EVM)," presented at the
The Sixth International Conference in Central Europe on Computer
Graphics and Visualization'98, 1998.

R. Juan-Arinyo, "Domain extension of isothetic polyhedra with minimal
CSG representation," Computer Graphics Forum, vol. 5, pp. 281-293,
1995.

J. Marzal, et al., "Vertex Configurations and Their Relationship on
Orthogonal Pseudo Polyhedra " World Academy of Science, Engineering
and Technology pp. 1-8, 2011.

635

