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Abstract—We investigate the large scale of networks in the 

context of network survivability under attack. We use appropriate 

techniques to evaluate and the attacker-based- and the defender-

based-network survivability. The attacker is unaware of the operated 

links by the defender. Each attacked link has some pre-specified 

probability to be disconnected. The defender choice is so that to 

maximize the chance of successfully sending the flow to the 

destination node. The attacker however will select the cut-set with 

the highest chance to be disabled in order to partition the network. 

Moreover, we extend the problem to the case of selecting the best p 

paths to operate by the defender and the best k cut-sets to target by 

the attacker, for arbitrary integers p,k>1. We investigate some 

variations of the problem and suggest polynomial-time solutions. 

 

Keywords—Defense/attack strategies, large scale, networks, 

partitioning a network. 

I. INTRODUCTION 

N this paper, we treat the case of attacks on large networks. 

We will provide optimal policies both for the attacker and 

defender of the network in a game-theoretic spirit. Networks 

are considered as good targets for intelligent threats including 

terrorism, wars, and rebellions. Many of the oil pipeline 

networks have been attacked in various places in the world 

such as Iraq, Saudi Arabia, and Libya in the last few years. 

Road networks as well as computer systems have been also 

attacked. Consequently, it is important to develop defense 

tools to protect our homeland infrastructure. One should not 

however under-estimate the skills and the destruction 

capacities of potential attackers. Therefore, defensive 

strategies should be devised in anticipation of intelligent 

attacks suggesting the determination of optimal attack 

strategies. 

II. LITERATURE REVIEW 

Some important literature in defense/attack strategies has 

been developed in the last decade. Interested readers may refer 

to [1] and [2]. Two nice papers on attacks on 

telecommunication and transportation networks are given 

respectively in [3] and [4]. Reference [5] discusses least-cost 

attack strategies on networks and provides a variety of 

operations research techniques to assess the network least-cost 

cut sets in a branch and bound fashion. 
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Reference [6] defines network survivability both for the 

case of perfect information, in which the attacker may observe 

the operated paths and hence attack those of interest, and 

absence of information where the attacker would select the 

links to target independently of the defender strategy of 

operating the network. In the latter case, they distinguish two 

types of network survivability; namely the defender-based- 

and the attacker-based- network survivability. They provide 

tools for assessing network survivability and compare the 

defender-based-network survivability against the attacker-

based-network survivability as well as against network 

reliability. All the assessments are made for relatively small 

networks. For this paper to be self-contained, we will display 

in Section III the main developments by [6]. 

In this paper, we extend [6] to the large scale and suggest 

some interesting generalizations. 

III. BACKGROUND 

We will start by discussing the case of perfect information 

in which both types of network survivability coincide. Then, 

we will display the main findings for the case of absence of 

information. We assume that the defender of the network is 

interested in sending some flow (in sufficient capacity) from a 

source node to a destination node. The attacker’s objective is 

to prevent the flow from reaching the destination; in which 

case the attack succeeds. Else, the attack is considered as 

failing. We assume that the attacker may target any link of the 

network. Each attacked link has a pre-defined survival 

probability. A link can be attacked only once. Attacks are 

made sequentially. The attacker is interested in determining 

the set of links to target in order to disable the network. The 

attack resources are limited so that the attacker would only 

consider a limited number of links in a specific order.  

In the case of perfect information, the network survivability 

is defined to be the highest probability of a breakthrough path 

to survive an attack. 

The case of absence of information is assumed to be the 

case where the attacker need not know the breakthrough path 

that has been effectively used by the defender. The attacker 

would opt for a conservative approach by disabling an entire 

cut set to make sure that the flow cannot reach its destination 

no matter what breakthrough path is used. The corresponding 

network probability to survive is referred to as the attacker-

based-network survivability. In contrast, the defender-based-

network survivability coincides with the one given in the case 

of perfect information. 

Determining the attacker-based-network survivability 

suggests solving a min-cut problem (by duality) which can 
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easily be modeled as a linear program. Reference [6] 

investigates the relationship between the defender-based- and 

the attacker-based-network survivability as well as their 

relationships with network reliability. Let Sp (respectively Sc) 

be the defender-based-network survivability (attacker-based-

network survivability). Also, let R be the network reliability. 

Then, the following results apply. 

Proposition 1.S� ≤ R ≤  S� 

Proposition 2. Except when the network is reduced to a series 

system (or a single breakthrough path), the following 

inequality holds: 

 

S� < R 

 

Proposition 3. Except when the network is reduced to a single 

link joining the source to the destination, the following 

inequality holds: 

 

S� < S� 

IV. CASE OF LARGE SCALE NETWORKS 

When the size of the network becomes reasonably large, 

one may wonder about the ability to assess the network 

survivability. We will briefly show that both types of network 

survivability may be approached using some efficient 

techniques.  

A. Defender-Based-Network-Survivability 

In order to assess the defender-based-network survivability 

of large networks, we can easily show that the problem is 

equivalent to the shortest-path formulation. 

In fact, let Ƥ be the set of all breakthrough paths and 

consider a breakthrough path P∈Ƥ. Let pij be the survivability 

of a link (i, j) of P. Then, 
 

�	 = ∏ �
�(
,�)∈	                           (1) 

 

The problem is to solve: 

  

                     ���	∈Ƥ �	                                    (2) 

 

Set �
� =  −��(�
�). Then, optimization problem (2) is 

equivalent to: 

 

 ���	∈Ƥ ∑ �
�(
�)∈	                             (3) 

 

Clearly, (3) is the shortest-path problem that can efficiently 

be solved through the corresponding standard techniques such 

as Dijkstra’s algorithm or Floyd’s Algorithm.  

B. Attacker-Based-Network-Survivability 

The problem has to do with identifying the cut-set with the 

lowest probability to survive. This is clearly a min-cut 

problem or equivalently (by duality) a flow-max problem. 

Both equivalent types of problems have been extensively 

studied in the literature and many polynomial-time algorithms 

are suggested to efficiently treat them. 

V. EXTENSIONS 

We investigate a number of interesting extensions in which 

we attempt to derive the network survivability. The extensions 

involve networks with multiple sources and/or sinks instead of 

single ones, the case of attacking nodes instead of arcs, and the 

case where the defender seeks to have all nodes of the network 

connected instead of sending flow from a source to a sink. 

A. Multiple Sources and/or Sinks 

If the network consists of a number of sources and/or sinks, 

then we may add a virtual source and/or sink (as appropriate). 

The virtual source/sink will be linked to the original 

sources/sinks with arcs having a survival probability of one. 

This brings us to a special case among those treated above. 

Applications may include attacking water pipelines that feed 
different cities from different dams. Another application could 

be to attack roads to prevent military troops from reaching 

battle fields from different barracks. 

B. Attacking Nodes Instead of Arcs 

In this case, we may virtually split each node into two nodes 

with a link having a survival probability equals the one 

corresponding to the node of interest. The remaining original 

arcs will have survival probabilities equal one. Again, this will 

be another special case of those treated above. Applications 

may include attacking boosters instead of oil pipelines in an 

oil-distribution network. 

C. Connecting All Nodes of the Network 

If the network operation consists on linking all the nodes of 

the network rather than sending flow from a source to a 

destination, then the defender-based-network survivability will 

be assessed as a minimum-spanning-tree problem for which 

the solution methodology is well-known and computationally 

efficient. In the case of perfect information, the attacker 

should simply attack the same path as to be chosen by the 

defender (i.e., the one solving the minimum-spanning-tree 

problem). For the case of absence of information; or say when 

the defender moves next to the attack and hence may deviate 

from the “destroyed path”, then the attacker would opt for a 

conservative approach to make sure that the attack would 

disconnect the network. This corresponds to the concept of the 

attacker-based-network survivability. In this case, the problem 

is modified to a one in which the attacker seeks to partition the 

network into two disconnected sub-networks. This can be seen 

as the minimum bisection problem which consists on 

separating the vertices of an undirected graph into two 

clusters, such that the weight of the edges crossing between 

clusters is minimized. In the attacker-based-network 

survivability, we consider that the weight of each edge {i,j} is 

equal to −���1 − �
� .  

The following mathematical formulation models the 

problem by maximizing the weights of arcs inside the two 

clusters which is equivalent to minimizing the total weight of 

arcs linking the two clusters.  

Let G(V,E) be an undirected graph where V is the set of 

vertices and E is the set of edges.  
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S1 and S2 denote respectively the first and the second cluster 

of the bisection where �! ∪ �# = $, �! ∩ �# = ∅ and |�!| ≥ 1. 

Let xj = )1 �* �+,- . ∈ �! 
0 +0ℎ-2��3-  ∀. ∈ $. Also, let  

 

yij= )1 �* -,5- 6�, .7 �3 �+0 3-�-80-, �� 0ℎ- 9�3-80�+�  
0 +0ℎ-2��3-  

∀6�, .7 ∈ : 
 

Then, the problem can be formulated as: 
 

��� ∑ −ln(1 − �
�)=
�6
,�7∈>                         (4) 

 

Subject to   
 

 ∑ ���∈? ≥ 1                             (5) 

 

                       ∑ ���∈? ≤ |$| − 1                              (6) 

 

        =
� ≤ 1 + �� − �
  ∀6�, .7 ∈ :                       (7) 

 

                      =
� ≤ 1 + �
 − ��∀6�, .7 ∈ :                 (8) 

 

                       =
� ∈ 60,17  ∀6�, .7 ∈ :                    (9) 

  

           �� ∈ 60,17  ∀. ∈ $                (10) 

 

After solving this integer linear program all edges that have 

(yij = 0) should be attacked.  

In order to make an efficient attack, we can require that the 

minimum number of separated nodes after the attack be larger 

than or equal to a given threshold value D. 

In this case, the same formulation still remains valid by 

replacing constraints (5) and (6) by: 

 

∑ ���∈? ≥ A                     (11) 

 

     ∑ �� ≤�∈? |$| − A                (12) 

 

Example 1. Consider the network displayed in Fig. 1 where 

each edge is labeled by the probability to survive after an 

attack. 

 

 

Fig. 1 Network of example 1 

 

In order to separate the network into two disconnected sub-

networks, we solve the above integer program.  

In case of D =1, the solution is to attack the edges {2,3} and 

{3,4} and the probability to succeed the attack is 0.6*0.5 =0.3. 

Therefore, the network will be divided into two clusters {3} 

and {1,2,4,5,6,7}. If however D =2, the solution is to attack 

the edges {5,4}, {5,1}, and {6,7} and the probability to succeed 

the attack is 0.2*0.2*0.7 =0.28. Therefore, the network will be 

divided into two clusters {5,6} and {1,2,3,4,7}.  

 When the size of the network gets reasonably large, we 

should make sure that the solution procedure is efficient. We 

conduct the following experiment. The survival probabilities 

upon attack are generated between 0.1 and 0.9 for all the links 

in the network. The number of nodes n is taken to be equal to 

10, 20, 30,…, 500. The degree of each node is randomly 

generated in the set {2,3,4}. Finally, m is the number of arcs in 

each instance.  

The proposed Integer Linear Program (5.1)-(5.7) is solved 

using CPLEX 12.6. All the computational experiments are 

carried out on an Intel(R) Core(TM) i7 2.00 GHz Personal 

Computer with 16 GB RAM. The results are displayed in 

Table I. The following notation is used: 

Sol: The optimal solution of each instance that gives the 

value of the probability to break successfully all the links of 

the best bisection.  

Time: The computational time spent by the solver to find 

the optimal solution.  

 D:  The minimum number of nodes that should include 

each cluster.  

We have tested the proposed mathematical formulation with 

three different values of D: 1, 5 and ⎿n/3⏌ on each instance.  

The empirical results show that the problem becomes harder 

to solve when the value of D increases especially for the large 

instances. In fact, the mathematical formulation is able to 

solve to optimality instances with a number of nodes larger 

than 320 in case of D =⎿n/3⏌knowing that the maximum 

allowable computation time is fixed to 3600 second. On the 

other hand, the same formulation was able to solve all 

instances in less than one second in case of D =1 and the 

largest instance has taken less than 3.5 seconds in case of D 

=5.  

It seems logical that the solution of most of instances is 

equal to zero in case of D =⎿ n/3⏌. In fact, the minimum 

number of nodes to separate from the network increases with 

the number of links to attack. Since the probability of a 

successful attack is the product of probabilities of the links to 

attack and given that the number of these links is large, then 

the resulting probability will converge to zero.  

In some instances, we have seen that the solution is equal to 

1 and this is due to the fact that the related networks are 

initially not connected. 

VI. CONCLUSION 

In this work, we extend the study by [6] to large networks. 

We provide a variety of tools to tackle reasonably sized 

networks. These tools include the shortest-path problem, the 

min-cut problem, the minimum-spanning-tree problem, the 

minimum bisection problem as well as integer programming. 

Our approach also extends to consider a variety of networks 

other than the one with a single source and a single destination 

that has been previously investigated. We illustrate, through 
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an example, the efficiency of our suggested methodology. In 

addition, we provide examples of interesting applications. 

 
TABLE I 

THE RESULTS OF THE EMPIRICAL STUDY 

  
D = 1 D = 5 D= ⎿n/3⏌ 

n m Sol Time Sol Time Sol Time 

10 18 0.604 0.202 0.008 0.052 0.033 0.156 

20 38 0.660 0.009 0.012 0.024 0.006 0.020 

30 62 0.354 0.011 0.023 0.023 0.001 0.028 

40 83 0.291 0.015 0.004 0.031 0.000 0.059 

50 112 0.516 0.018 0.010 0.045 0.000 0.043 

60 133 0.325 0.056 0.013 0.130 0.000 0.143 

70 152 0.428 0.032 0.026 0.175 0.000 0.184 

80 177 0.501 0.039 0.039 0.154 0.000 0.571 

90 199 0.494 0.058 0.009 0.188 0.000 0.697 

100 219 1.000 0.000 0.014 0.238 0.000 0.825 

110 246 0.591 0.053 0.036 0.256 0.000 1.524 

120 262 0.714 0.111 0.032 0.340 0.000 0.762 

130 284 0.606 0.072 0.038 0.489 0.000 1.634 

140 307 1.000 0.001 0.031 0.285 0.000 1.119 

150 333 0.609 0.095 0.053 0.414 0.000 6.899 

160 352 1.000 0.001 0.113 0.496 0.000 2.560 

170 379 0.592 0.112 0.039 0.693 0.000 10.444 

180 397 1.000 0.001 0.051 0.677 0.000 10.541 

190 430 0.423 0.235 0.017 0.909 0.000 20.849 

200 435 0.757 0.132 0.106 0.678 0.000 36.884 

210 467 0.757 0.178 0.111 0.506 0.000 26.514 

220 499 0.740 0.164 0.051 1.172 0.000 155.960 

230 510 0.712 0.163 0.067 0.888 0.000 27.995 

240 529 0.616 0.313 0.072 0.919 0.000 60.732 

250 574 0.790 0.193 0.092 0.876 0.000 141.352 

260 572 0.720 0.201 0.064 0.841 0.000 112.663 

270 617 0.792 0.200 0.040 1.710 0.000 304.846 

280 627 0.587 0.286 0.062 1.451 0.000 1811.413 

290 661 0.602 0.448 0.082 1.259 0.000 411.580 

300 669 0.533 0.241 0.052 1.459 * >3600 

310 698 0.559 0.221 0.092 1.563 0.000 1469.318 

320 720 0.632 0.330 0.033 2.013 0.000 822.296 

330 735 0.697 0.183 0.065 2.398 * >3600 

340 765 0.684 0.217 0.065 1.890 * >3600 

350 780 0.660 0.367 0.080 1.758 * >3600 

360 816 0.697 0.441 0.064 1.964 * >3600 

370 840 0.688 0.398 0.052 3.426 * >3600 

380 844 0.688 0.533 0.070 2.080 * >3600 

390 877 0.670 0.349 0.073 2.496 * >3600 

400 891 0.668 0.614 0.102 2.323 * >3600 

410 918 0.801 0.468 0.142 1.875 * >3600 

420 947 0.679 0.380 0.112 1.228 * >3600 

430 969 0.756 0.427 0.151 1.560 * >3600 

440 975 0.729 0.316 0.148 0.916 * >3600 

450 991 0.705 0.574 0.093 1.255 * >3600 

460 1041 0.659 0.488 0.075 2.321 * >3600 

470 1037 0.740 0.748 0.129 1.499 * >3600 

480 1056 0.613 0.475 0.085 2.226 * >3600 

490 1095 0.765 0.660 0.115 2.369 * >3600 

500 1122 0.880 0.484 0.127 3.420 * >3600 
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