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Abstract—Sentiment analysis means to classify a given review 

document into positive or negative polar document. Sentiment 
analysis research has been increased tremendously in recent times 
due to its large number of applications in the industry and academia. 
Sentiment analysis models can be used to determine the opinion of 
the user towards any entity or product. E-commerce companies can 
use sentiment analysis model to improve their products on the basis 
of users’ opinion. In this paper, we propose a new One-class Support 
Vector Machine (One-class SVM) based sentiment analysis model 
for movie review documents. In the proposed approach, we initially 
extract features from one class of documents, and further test the 
given documents with the one-class SVM model if a given new test 
document lies in the model or it is an outlier. Experimental results 
show the effectiveness of the proposed sentiment analysis model. 

 
Keywords—Feature selection methods, Machine learning, NB, 

One-class SVM, Sentiment Analysis, Support Vector Machine. 

I. INTRODUCTION 

HE textual information available on the Web is of two 
types: facts and opinions statements. Facts are objective 

sentences about the entities, and do not show any sentiments. 
Opinions are subjective in nature and generally describe the 
people’s sentiments towards entities and events. Sentiment 
analysis research has been increasing tremendously for last 10 
years due to the wide range of business and social applications 
[1]. Opinion Mining or Sentiment Analysis is the study that 
analyses people’s opinion and sentiment towards entities such 
as products, services etc. in the text. The automatic analysis of 
online contents to extract the opinion requires deep 
understating of natural text by the machine. Sentiment analysis 
research can be categorized among Document level, Sentence 
level and Aspect/Feature level sentiment analysis. Document 
level sentiment analysis classifies a review document as 
containing positive or negative polarity. It considers a 
document as a single unit. Sentence level sentiment analysis 
takes a sentence to extract the opinion or sentiment expressed 
in that sentence. Aspect based sentiment analysis deals with 
the methods that identify the aspects/entities in the text about 
which an opinion is expressed [2]. Further, the sentiments 
expressed about these entities are identified. 

What other people think has always been very important in 
decision-making. Whenever people want to purchase a 
product (for e.g. mobile phone, camera, laptop, etc.), they ask 
their friends or their peers about the product if they have used 

 
Prof. Chothmal (corresponding author) and Dr. Basant Agarwal are with 

the Department of Computer Science and Engineering, Swami Keshvan and 
Institute of Technology Management & Gramothan, Jaipur, India (phone: 
+919414305959; e-mail: hodcs@skit.ac.in, thebasant@gmail.com).  

that. Nowadays, due to the advent of Web recent trends, 
people express their opinion, feelings, and experiences about 
the products or services on the forums, blogs, social network 
and content-sharing services. The user can know the merits 
and demerits of the product from the experiences shared by 
people on the web, which can be useful for them in taking 
purchasing decisions [3]. E-commerce companies can improve 
their products or services on the basis of users’ opinion and 
can also know the current trends of the market. Examples of 
sentiment analysis include identifying movie popularity from 
online reviews, which model of a camera is liked by most of 
the users and which music is liked by most of the people, etc. 
Opinion mining and sentiment analysis also have applications 
in political domain and brand analysis. 

In this paper, we propose to use one-class SVM machine 
learning algorithm for the sentiment analysis. In this methods, 
only review document of one class either positive or negative 
class are required to develop the machine-learning model. We 
use positive review documents to develop machine learning 
model. It is due to the assumption that most of the reviews are 
positive reviews. Most of the people write the positive 
reviews. 

The paper is organized as follows. In Section II, we give an 
overview of the related work done in the field of sentiment 
analysis. In Section III, we provide a description of the one-
class SVM algorithm which we use for sentiment analysis. 
Section IV presents the proposed algorithm. Experimental 
results and discussion are presented in Section V. Finally, we 
conclude future work in Section VI. 

II. RELATED WORK 

Sentiment analysis research has attracted large number of 
researchers around the globe [1], [17], [18]. Machine learning 
methods have been widely applied for sentiment analysis 
problem. Mainly Support Vector Machine (SVM), Naive 
Bayes (NB), Maximum Entropy, Artificial Neural Networks 
methods have been adopted by most of the researchers for 
sentiment analysis [4], [5], [19], [20]. Authors in [4] used 
different machine learning algorithms like NB, SVM, and 
Maximum Entropy (MaxEnt) for sentiment analysis of movie 
review dataset. Their experimental results show that SVM 
outperforms other machine learning method for sentiment 
analysis. Authors in [5] also explored that SVM performs 
better than other classifiers for sentiment analysis. Authors in 
[6] used SVM and NB classifiers for sentiment analysis with 
various feature weighting schemes and feature selection 
methods. Their experimental results showed that SVM 
classifier is better than NB classifier for sentiment analysis. 

One-Class Support Vector Machine for Sentiment 
Analysis of Movie Review Documents  
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C.  Model Selection for One-Class SVM 

There are two parameters need to be set before training the 
One-class SVM: v and gamma. The generalization 
performance of one-class SVM can be evaluated by two 
measures: the size of region and the generalization fraction of 
data points in the region. Small size indicates the probability 
that a data point of class “-1” falls into this region is small. 
Great generalization fraction of data points indicates that the 
probability that a new data point of this class (+1) falls into 
this region is great. The parameter decides the non-linear 
characteristics of the decision function, in other words, it 
decides the “shape” of the region. The parameter controls not 
only the fraction of data points in the region but also the 
generalization ability. Thus, the kernel and v all influence the 
size of region and the generalization fraction of data points in 
the region. We experiment with different combinations of v 
and to get the best results, 

V. DATASET, EXPERIMENTAL SETUP AND RESULTS 

A. Dataset Used 

To evaluate the performance of the proposed methods, one 
of the most popular publicly available movie review dataset is 
used [16]. This standard dataset, known as Cornell Movie 
Review Dataset consists of 2000 reviews containing 1000 
positive and 1000 negative labelled reviews collected from 
Internet Movie Database (IMDb). Support Vector Machine 
(SVM), Naïve Bayes (NB) algorithms have been used 
extensively for sentiment analysis [4]-[6]. Therefore, we use 
these classifiers for classification of review documents in 
positive or negative class. In addition, we use One-class SVM 
classifier for sentiment analysis. To evaluate the performance 
of the proposed method, we use 90% documents positive 
documents to develop the one-class SVM model. Further, we 
use 10% positive and 10% negative documents for testing. 
Further, to evaluate the performance with other classifiers viz. 
SVM, NB, we divide the dataset into 90% training and 10% 
testing documents, such that both the sets are disjoint. 
LibSVM software tool is used to develop one-class SVM and 
linear SVM classifiers. WEKA software is used to develop 
NB classification model for sentiment analysis. 

B. Evaluation Metrics 

Precision, Recall, Accuracy and F- measure are used for 
evaluating performance of sentiment classification. Precision 
for a class C is the fraction of total number of documents that 
are correctly classified and total number of documents that 
classified to the class C (sum of True Positives (TP) and False 
Positives (FP)). Recall is the fraction of total number of 
correctly classified documents to the total number of 
documents that belongs to class C (sum of True Positives and 
False Negative (FN)). F –measure is the combination of both 
precision and recall, is given by 

 
)recallprecision()recall*precision(*MeasureF  2    (1) 

 
F-measure is used to report the performance of classifiers 

for the sentiment classification. 

C. Results and Discussions 

Experimental results show that unigram features performs 
better than other features if we use them individually (results 
as shown in Table I) for movie review dataset. For example, 
unigram feature set produces the F-measure 84.2% as 
compared to 78.8% and 56.2% respectively for bi-grams, 
trigram features with SVM classifier on movie review datasets 
as shown in Table I. Further, composite features produce 
better results as compare to individual features. Composite 
feature set comprising of unigrams, bigrams, and trigrams 
produces the best results in comparison to all other features. 
For example, composite feature set of unigrams, bigrams, and 
trigrams gives the F-measure of 87.0 % with SVM classifier. 
Composite features gives better results as compare to their 
individual features due to the reason that by combing the 
features more information is used in the classification model. 

 
TABLE I 

F-MEASURE (IN %) FOR THE VARIOUS FEATURE SETS WITH VARIOUS 

CLASSIFIERS ON MOVIE REVIEW DATASET 

Features SVM Naive Bayes 
One-Class 

SVM 
Unigrams 84.2 82.6 86.1 

Bigrams 78.8 74.9 80.1 

Trigrams 56.2 59.1 60.1 

Unigrams + Bigrams 86.7 83.5 86.9 

Unigrams + Trigrams 84.4 82.8 86.5 

Unigrams + Bigrams + Trigrams 87.0 84.9 87.9 

 
One-class SVM classifier performs best as compared to 

other classification algorithms for sentiment analysis (results 
as shown in Table I). For example, one-class SVM produces 
better F-measure of 86.1% as compared to 84.2% and 82.6% 
for SVM and NB classifiers respectively. Composite feature 
set of unigrams, bigrams and trigrams produces the best 
results with one-class SVM i.e. F-measure of 87.9% on movie 
review datasets. The possible reason that the one-class 
machine learning model performs better than other classifiers 
is that it makes use of both the positive and negative sample 
information in building the model.  

VI. CONCLUSION 

Sentiment analysis is to assign a given review document 
into positive or negative polarity. In this paper, we propose a 
new One-class Support Vector Machine (One-class SVM) 
based sentiment analysis model for movie review documents. 
Proposed method uses review documents of one of the class 
either positive or negative for developing the sentiment 
analysis model. We used positive review documents for 
developing one-class SVM model. Experimental results show 
the effectiveness of the proposed sentiment analysis model. 
We wish to compare the performance of these features on 
more datasets of different domain, and also study the effect of 
proposed method on non-English documents. 
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