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Abstract—The modelling of physical phenomena, such as the 

earth’s free oscillations, the vibration of strings, the interaction of 
atomic particles, or the steady state flow in a bar give rise to Sturm-
Liouville (SL) eigenvalue problems. The boundary applications of 
some systems like the convection-diffusion equation, electromagnetic 
and heat transfer problems requires the combination of Dirichlet and 
Neumann boundary conditions. Hence, the incorporation of Robin 
boundary condition in the analyses of Sturm-Liouville problem. This 
paper deals with the computation of the eigenvalues and 
eigenfunction of generalized Sturm-Liouville problems with Robin 
boundary condition using the finite element method. Numerical 
solution of classical Sturm–Liouville problem is presented. The 
results show an agreement with the exact solution. High results 
precision is achieved with higher number of elements. 

 
Keywords—Sturm-Liouville problem, Robin boundary condition, 

finite element method, eigenvalue problems. 

I. INTRODUCTION 

TURM-LIOUVILLE boundary value problem or 
eigenvalue problem is an important theory, which 

essentially is an extension of the spectral theorem from 
discretised vector spaces into continuous function spaces. 
They have continued to provide new ideas and major advances 
in the field of spectral Analysis solutions to separable partial 
differential equations and various applications in the field of 
physics. 

Sturm-Liouville problem is a second-order ordinary 
differential equations problem where two boundary conditions 
are specified, but where no unique solution exists. These 
problems may be regular or singular at each endpoint of the 
underlying interval [1]. They arise throughout the field of 
applied mathematics, for example, they are used to describe 
the vibrational modes of various systems, such as the 
vibrations of a string. These equations are common, both in 
the field of classical physics (example is thermal conduction) 
and quantum mechanics (example is Schrodinger Equation), 
where they are used to describe processes where some 
boundary value is held constant, while the system is in 
operation. 

The Classical Sturm-Liouville theory consists of finding the 
eigensolutions (and eigenvalues) for second-order ordinary 
differential equations on a finite interval with no singularities. 
They commonly arise from linear partial differential equations 
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(PDEs) in several space dimensions when the equations are 
separable, in some coordinate systems such as cylindrical or 
spherical coordinates. Some examples of these equations and 
their applications are the Bessel, Legendre, and Laguerre 
equations. Bessel equations arise when solving the Laplace 
and Helmholtz equations by separation of variables in 
cylindrical polar coordinates. Legendre equation arises in 
solving Laplace equations in spherical polar coordinates, and 
they give expressions for the spherical harmonic functions. 
While the Laguerre equation arises in solutions of 3-
dimensional Schrodinger equation with an inverse-square 
potential and in Gaussian integration. 

In 1836-1837, Sturm and Liouville published a series of 
papers on second order linear ordinary differential equations 
including boundary value problems [2]. The influence of their 
work was such that this subject became known as Sturm-
Liouville theory. Many thousands of papers, by 
mathematicians, physicists, engineers, and others, relating to 
this area have been written since then. Yet, remarkably, this 
subject is an intensely active field of research today. Dozens 
of papers are published on Sturm-Liouville Problems (SLP) 
every year. 

Reference [3] studied a procedure for the automatic 
computation of the eigenvalues and the eigenfunctions of one-
dimensional linear Sturm-Liouville boundary value Eigen 
problems, for both singular and nonsingular. The continuous 
coefficients of a regular Sturm-Liouville problem were 
approximated by a finite number of step functions. Reference 
[4] obtained the asymptotic formulas for eigenvalues, eigen 
functions, and the reciprocals of the eigenfunction norms for 
eigenvalue problems associated with the general Sturm-
Liouville equation having regular endpoint. Reference [5] 
found an expression for the derivative of an eigenvalue with 
respect to a given parameter: an endpoint, a boundary 
condition, a coefficient or the weight function of a Sturm-
Liouville problem. The Homotopy Analysis Method (HAM) 
was applied to numerically approximate the eigenvalues of the 
second and fourth-order Sturm–Liouville problems in [6]. The 
eigenvalues were calculated by starting the HAM algorithm 
with one initial guess.  

Reference [7] considered the nth eigenvalue as a function 
on the space of self-adjoint regular Sturm–Liouville problems 
with positive leading coefficient and weight functions. 
Reference [8] derived a method of computing accurate 
approximations to the eigenvalues and Eigen functions of 
regular Sturm–Liouville differential equations. The method 
consists of replacing the coefficient functions of the given 
problem by piecewise polynomial functions and then solving 
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the resulting simplified problem. References [9]-[12] studied 
the spectral of perturbed Sturm-Liouville problem and 
considered the boundary-value problem which consists of the 
integro-differential equation. 

Robin boundary conditions, also called impedance 
boundary conditions, from their application in electromagnetic 
problems, or convective boundary conditions, from their 
application in heat transfer problems [13] are a weighted 
combination of Dirichlet boundary and Neumann boundary 
conditions. The Robin boundary conditions take the form  
 

ܶߙ ൅ ܶ׏ሺߚ ∙ ݊ሻ ൌ ݄		  Γ (1)		݊݋			
 

Robin boundary conditions are applicable to the solution of 
Sturm-Liouville problems. In this work, a finite element 
method (FEM) for computing the eigenvalues and 
eigenfunctions of a Sturm-Lioville problem with Robin 
Boundary conditions is presented and analysed. 

II. THE PROBLEM FORMULATION 

Consider a Sturm-Liouville boundary value problem with 
Robin boundary conditions  
 

െ
݀
ݔ݀

൬ܲሺݔሻ
ݑ݀
ݔ݀
൰ ൅ ݑሻݔሺݍ ൌ ;			ሻݔሺݒሻݔሺܴߣ	 		ܽ ൏ ݔ ൏ ܾ (2) 

 

ሺܽሻݑଵܤ ൅	ܤଶ
ݑ݀
ݔ݀

ሺܽሻ ൌ 0 (3) 

 

ሺܾሻݑଵߙ ൅	ߙଶ
ݑ݀
ݔ݀

ሺܾሻ ൌ 0 (4) 

                                                                                                                                            
We can apply the finite element method to this problem in 

the usual way by first constructing a weak form for the 
equation; 
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The boundary conditions imply 
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Therefore, the weak form can be written in the form: 
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Assume that an approximate solution can be written in the 
form: 
 

௡ܸሺݔሻ ൌ ෍ݑௗߛௗሺݔሻ

௡

௝ୀଵ

  (9) 

 
where ߛௗ is the spike function. 

Substituting (6) and (7) into (8) gives the generalized 
eigenvalue problem 
 

ݑܣ ൌ  (10) ݑܴߣ
 
where; 

ܣ ൌ ܭ ൅ܯ ൅  (11) ܩ
 
K, M, and F are the stiffness matrix, mass matrix and load 
vector respectively corresponding to Neumann conditions 
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The boundary term can be written as ݑܩ. We have 
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This implies that: 
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A. Heat Transfer Problem 

Consider the heat transfer problem that models the 
temperature distribution in a rectangular fin of length, ܮ and 
thickness, ܽ. 

The boundary value problem is given as: 
 

െ ׏ ∙ ሺ݇ ∙ ׏ ܶሻ ൅ ߩ ܿ௩ሺܶ െ ஶܶሻ
߲ܶ
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Subjected to the boundary conditions: 
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